사람들이 어떠한 행동을 할 때는 특정 의도를 가지고 있기 때문에 상황에 맞는 적합한 서비스를 제공하기 위해서는 사용자가 현재 하고 있는 행동에 대한 의도를 파악해야한다. 이를 위해 의도와 행동사이의 연관성을 이용하여 사용자의 의도에 따른 행동의 모델을 만든다. 일상생활에서 사람들이 하는 행동은 작은 단위 행동들의 연속(sequence)으로 이루어지므로, 사용자의 단위행동의 순서를 분석한다면 의도에 따른 행동 모델을 만들기가 용이해진다. 하지만, 이런 단위 행동 분석 방법의 문제점은 같은 의도를 가진 행동이 완벽하게 동일한 단위 행동의 순서로 일어나지는 않는다는 점이다. 시스템은 동일한 동작 순서로 일어나지 않는 행동들을 서로 다른 의도를 가진 행동으로 이해하게 된다. 따라서 이 문제점을 해결할 수 있는 사용자 의도 파악 기법이 필요하다. 본 논문에서는 과거의 사용자의 행동 정보를 기반으로 행동들의 유사성을 판별하였고, 그 결과를 이용하여 행동의 의도를 파악하는 방법을 사용한다. 이를 위해, 과거 사용자가 한 행동들을 단위 시간 별로 나누어 단위 행동의 순서로 만들고, 이를 K-평균 군집화 방법(K-means)으로 군집들의 순서로 나타내었다. 이 변경된 사용자 행동 정보를 사용하여 은닉 마코프 모델을 학습 시키고, 이렇게 만들어진 은닉 마코프 모델은 현재 사용자가 행한 행동이 어떤 행동인지를 예측하여 사용자의 의도를 파악한다.
본 논문에서는 인간과 엔터테인먼트 로봇의 상호작용을 위해, 동기(motivation)와 계층화된 감정(hierarchical emotion)에 기반한 행동결정 모델을 설계하였다. 감정모델은 계층화되고 학습 가능하도록 하여, 인간의 행동결정과 유사하게 동작하도록 하였다. 감정모델을 통해 로봇의 행동에 대한 인간의 반응이 학습되는데, 그 결과가 행동결정에 영향을 주어 로봇의 행동에 반영되도록 하였다. 감정모델과 함께 동기가 행동결정에 영향을 주는데, 초기에는 외부에서 주어지는 동기가 주로 행동을 결정하고, 감정모델이 학습될수록 점차 감정의 영향이 증가하여 동기와 계층화된 감정을 함께 고려하여 행동을 결정하도록 하였다. 그럼으로써, 인간과의 상호작용을 통해 정보를 축적하고 인간의 반응에 적응해나갈 수 있게 하였다
본 연구의 목적은 인접한 2항만 간 화주의 항만선택에 관한 행동을 분석하기 위한 것이다. 이를 위해 본 연구에서는 퍼지추론법과 뉴럴네트웍 모델을 이용하여 항만선택 행동모델, 즉 퍼지-뉴로 행동모델을 구축하고 부산항과 광양항을 대상으로 화주의 항만선택 행동을 분석하였다. 또한 로짓모델과 비교하여 퍼지-뉴로 모델의 판별 우수성을 검정하였고, 서비스 수준과 화물량 등의 파라미터를 변경한 항만선택 행동을 분석하였다.
본 논문에서는 휴먼 객체들의 이동 궤적 정보를 기반으로 휴먼 상호 행동을 인식하기 위한 새로운 모델을 제안한다. 복잡한 휴먼 상호 행동들은 의미있는 작은 단위로 분할될 수 있는데 이를 '부-상호행동'이라 하며, 이들을 표현하는 모델들의 순차적 연결 또는 네트워크로 상호 행동을 모델링한다. 제안하는 모델은 서로 다른 상호 행동들에 공통적으로 나타나는 부-상호 행동들을 공유하도록 함으로써 모델의 복잡도를 낮추어 매우 효율적이다. 상호 행동 네트워크 모델의 동작 분석 및 기존 방법과의 비교 실험을 통해 제안한 방법의 우수성을 확인할 수 있었다.
본 논문은 깊이 정보를 기반으로 모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용하여 연속적인 사람 행동들을 인식하는 시스템을 설명하고 연속적인 행동 인식 시스템에서 인식 성능을 개선하기 위해 행동 적출을 수행하는 적출 모델을 제안한다. 본 시스템의 구성은 전처리 과정, 사람 행동 및 적출 모델링 그리고 연속적인 사람 행동 인식으로 이루어져 있다. 전처리 과정에서는 영상 분할과 시공간 템플릿 기반의 특징을 추출하기 위하여 Depth-MHI-HOG 방법을 사용하였으며, 추출된 특징들은 사람 행동 및 적출 모델링 과정을 통해 시퀀스들로 생성된다. 이 생성된 시퀀스들과 은닉 마르코프 모델을 사용하여 정의된 각각의 행동에 적합한 사람 행동 모델과 제안된 적출 모델을 생성한다. 연속적인 사람 행동 인식은 연속적인 행동 시퀀스에서 적출 모델에 의해 의미 있는 행동과 의미 없는 행동을 분할하는 행동 적출과 의미 있는 행동 시퀀스에 대한 모델의 확률 값들을 비교하여 연속적으로 사람 행동들을 인식한다. 실험 결과를 통해 제안된 모델이 연속적인 행동 인식 시스템에서 인식 성능을 효과적으로 개선하는 것을 검증한다.
사용자로그는 많은 숨겨진 정보를 포함하고 있지만 데이터 정형화가 이루어지지 않았고, 데이터 크기도 너무 방대하여 처리하기 까다로워서 아직 밝혀져야 할 부분들을 많이 내포하고 있다. 특히 행동마다의 모든 시간정보를 포함하고 있어서 이를 응용하여 많은 부분을 밝혀낼 수 있다. 하지만 로그데이터 자체를 바로 분석으로 사용할 수는 없다. 유저 행동 모델 분석을 위해서는 별도의 프레임워크를 통한 변환과정들이 필요하다. 이 때문에 유저 행동모델 분석 프레임워크를 먼저 파악을 하고 데이터에 접근해야 한다. 이 논문에서는, 우리는 유저 행동모델을 효과적으로 분석하기 위한 프레임워크 모델을 제안한다. 본 모델은 대규모 데이터를 빨리 처리하기 위한 분산환경에서의 MapReduce 프로세스와 유저별 행동분석을 위한 데이터 구조 설계에 대한 부분을 포함한다. 또한 실제 온라인 서비스 로그의 구조를 바탕으로 어떤 방식으로 MapReduce를 처리하고 어떤 방식으로 유저행동모델을 분석을 위해 데이터 구조를 어떤식으로 변형할지 설명하고, 이를 통해 어떤 방식의 모델 분석으로 이어질지에 대해 상세히 설명한다. 이를 통해 대규모 로그 처리방법과 분석모델 설계에 대한 기초를 다질 수 있을 것이다.
선원의 행동오류는 해양사고를 야기하는 하나의 직접적인 원인이기 때문에 이를 이해하는 것은 해양사고 예방에 근본이 된다. 선원의 행동오류를 이해하기 위해서는 행동오류를 추정하고 예측할 수 있어야 한다. 본 연구에서는 은닉 마르코브 모델(Hidden Markov Model, HMM)을 이용하여 선원들의 행동오류를 추정하고 예측하였다. 아울러 5가지 선박의 종류 각각에 나타나는 선원들의 행동오류를 서로 비교 분석하였다. 모델에 사용한 데이터는 해양안전심판원의 해양사고 보고서에 기록된 내용을 SRKBB(Skill-, Rule- and Knowledge-Based Behavior) 모델을 기반으로 분류하고 관측 수열을 생성하며 라벨링 작업을 통해서 구축하였다. 구축한 데이터를 적용하여 HMM을 보정하고 파라미터를 획득하여 선원들의 행동오류에 관한 모델을 구축하였다. 실험 결과, 선박 종류별로 선원들의 행동오류의 패턴은 서로 다르고, 이를 통해서 선박종류별 해기사들의 행동오류의 추정과 예측이 가능함을 일차적으로 확인할 수 있었다. 추후 본 연구를 지속 전개하여 해양사고 예방을 위한 인적오류의 저감에 기여할 수 있는 방안을 모색할 에정이다.
본 논문에서는 비분할 비디오로부터 이 비디오에 담긴 사람의 행동을 효과적으로 탐지해내기 위한 심층 신경망 모델을 제안한다. 일반적으로 비디오에서 사람의 행동을 탐지해내는 작업은 크게 비디오에서 행동 탐지에 효과적인 특징들을 추출해내는 과정과 이 특징들을 토대로 비디오에 담긴 행동을 탐지해내는 과정을 포함한다. 본 논문에서는 특징 추출 과정과 행동 탐지 과정에 이용할 심층 신경망 모델을 제시한다. 특히 비디오로부터 각 행동별 시간적, 공간적 패턴을 잘 표현할 수 있는 특징들을 추출해내기 위해서는 C3D 및 I-ResNet 합성곱 신경망 모델을 이용하고, 시계열 특징 벡터들로부터 행동을 자동 판별해내기 위해서는 양방향 BI-LSTM 순환 신경망 모델을 이용한다. 대용량의 공개 벤치 마크 데이터 집합인 ActivityNet 비디오 데이터를 이용한 실험을 통해, 본 논문에서 제안하는 심층 신경망 모델의 성능과 효과를 확인할 수 있었다.
멀티 에이전트 강화학습에서 중요한 이슈 중의 하나는 자신의 성능에 영향을 미칠 수 있는 다른 에이전트들이 존재하는 동적 환경에서 어떻게 최적의 행동 정책을 학습하느냐 하는 것이다. 멀티 에이전트 강화 학습을 위한 기존 연구들은 대부분 단일 에이전트 강화 학습기법들을 큰 변화 없이 그대로 적용하거나 비록 다른 에이전트에 관한 별도의 모델을 이용하더라도 현실적이지 못한 가정들을 요구한다. 본 논문에서는 상대 에이전트에 대한RBFN기반의 행동 정책 모델을 소개한 뒤, 이것을 이용한 강화 학습 방법을 설명한다. 본 논문에서는 제안하는 멀티 에이전트 강화학습 방법은 기존의 멀티 에이전트 강화 학습 연구들과는 달리 상대 에이전트의 Q 평가 함수 모델이 아니라 RBFN 기반의 행동 정책 모델을 학습한다. 또한, 표현력은 풍부하나 학습에 시간과 노력이 많이 요구되는 유한 상태 오토마타나 마코프 체인과 같은 행동 정책 모델들에 비해 비교적 간단한 형태의 행동 정책 모델을 이용함으로써 학습의 효율성을 높였다. 본 논문에서는 대표적이 절대적 멀티 에이전트 환경인 고양이와 쥐 게임을 소개한 뒤, 이 게임을 테스트 베드 삼아 실험들을 전개함으로써 제안하는 RBFN 기반의 정책 모델의 효과를 분석해본다.
본 연구는 청소년이 바람직한 사회구성원으로서 성장하기 위해 필요한 요소로서 타인에 대한 배려와 돌봄의 행위인 친사회적 행동에 주목하였다. 또래집단의 영향이 청소년의 친사회적 행동에 어떻게 작용하고 있는지 알아보기 위해 또래영향모델과 개인특성모델을 중심으로 분석하였다. 보건복지부의 '아동청소년종합실태조사' 자료를 위계적 다중회귀분석으로 검증한 결과, 청소년의 친사회적 행동은 친구의 친사회적 행동으로부터 긍정적인 영향을, 친구의 반사회적 행동으로부터 부정적으로 영향을 받았다. 개인특성 요인인 자아존중감, 공감능력 변수를 포함한 모형에서는 공감능력, 자아 존중감, 친구의 친사회적 행동, 그리고 친구의 반사회적 행동 순으로 청소년의 친사회적 행동에 통계적으로 유의미한 결과를 보였다. 따라서 또래영향모델과 개인특성모델이 모두 유효하나 개인특성의 영향이 더 큰 것으로 검증되었다. 또한 개인특성과 또래특성 간의 상호작용효과를 살펴본 결과, 자아존중감이 높은 경우 친구의 친사회적 행동이 본인의 친사회적 행동에 미치는 긍정적인 영향이 더 크고, 공감능력이 높은 경우 친구의 반사회적 행동이 본인의 친사회적 행동에 미치는 부정적인 영향이 더 적은 것으로 나타났다. 청소년의 친사회적 행동에 대한 또래집단의 영향력은 개인특성에 의해 영향을 받는 것으로 나타나, 또래영향모델과 개인특성모델은 청소년의 친사회적 행동에 상호보완적으로 작용하고 있는 것으로 검증되었다. 마지막으로 청소년의 긍정발달을 위한 사회복지적 함의를 논하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.