• 제목/요약/키워드: 햅틱 제어

검색결과 82건 처리시간 0.022초

Hand Haptic Interface for Intuitive 3D Interaction (직관적인 3D 인터랙션을 위한 핸드 햅틱 인터페이스)

  • Jang, Yong-Seok;Kim, Yong-Wan;Son, Wook-Ho;Kim, Kyung-Hwan
    • Journal of the HCI Society of Korea
    • /
    • 제2권2호
    • /
    • pp.53-59
    • /
    • 2007
  • Several researches in 3D interaction have identified and extensively studied the four basic interaction tasks for 3D/VE applications, namely, navigation, selection, manipulation and system control. These interaction schemes in the real world or VE are generally suitable for interacting with small graspable objects. In some applications, it is important to duplicate real world behavior. For example, a training system for a manual assembly task and usability verification system benefits from a realistic system for object grasping and manipulation. However, it is not appropriate to instantly apply these interaction technologies to such applications, because the quality of simulated grasping and manipulation has been limited. Therefore, we introduce the intuitive and natural 3D interaction haptic interface supporting high-precision hand operations and realistic haptic feedback.

  • PDF

Performance Evaluation of Vehicle Gear-shifting Supportive Device Utilizing MR Haptic Cue (MR 햅틱 큐를 이용한 차량 기어변속 보조장치의 성능평가)

  • Han, Young-Min;Min, Chul-Gi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제23권2호
    • /
    • pp.160-166
    • /
    • 2013
  • This paper proposes a driver supportive device with haptic cue function which can be applicable for vehicles adopting manual transmission system to transmit gear-shifting information to a driver by kinesthetic forces. This haptic cue function is implemented on accelerator pedal by utilizing magnetorheological(MR) fluid and clutch mechanism. In order to achieve this goal, an MR clutch mechanism is devised to be capable of rotary motion of accelerator pedal. The proposed MR clutch is then optimally designed and manufactured under consideration of spatial limitation of vehicles. After transmission torque is experimentally evaluated according to field intensity. The manufactured MR clutch is integrated with accelerator pedal and electric motor to establish the haptic cue device. Control performances are experimentally evaluated via a simple feed-forward control algorithm.

On the Stability and Performance Limits of the Force Reflecting Haptic Manipulator (가상반발력을 생성하는 햅틱장비의 안정성과 성능한계에 관한 연구)

  • ;Greg R. Luecke
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제15권12호
    • /
    • pp.180-187
    • /
    • 1998
  • The stability and theoretical performance limits of the feedback controlled force reflecting haptic manipulator have been discussed. All the virtual environment which interact physically with the haptic system have its own stable performance limit. Three different realization of the interfaces have been compared using the driving point admittance. The haptic system which is separated from the human hand or finger is superior to its stable interaction provided that there is a means to apply a direct damping between the haptic manipulator and the human finger Electro-magnetic force is used for its digital implementation of the simple separated type haptic device. The stable limits of a virtual wall is calculated and experimental results show that there is performance limits in this implementation.

  • PDF

Force Feedback Control of 3 DOF Haptic Device Utilizing Electrorheological Fluid (ER 유체를 이용한 3 자유도 햅틱 장치의 힘 반향 제어)

  • Han, Y.M.;Kang, P.S.;Choi, S.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.213-216
    • /
    • 2005
  • This paper presents force feedback control performance of a 3DOF haptic device that can be used for minimally invasive surgery (MIS). As a first step, a 3DOF electrorheological (ER) joint is designed using a spherical mechanism. And it is optimized based on the mathematical torque modeling. Subsequently, the master haptic device is manufactured by the spherical joint. In order to achieve desired force trajectories, model based compensation strategy is adopted for the ER master. Therefore, Preisach model fur the PMA-based ER fluid is identified using experimental first order descending (FOD) curves. A compensation strategy is then formulated through the model inversion to achieve desired force at the ER master. Tracking control performances for sinusoidal force trajectory are presented, and their tracking errors are evaluated.

  • PDF

Nonlinear Virtual Coupling for Stable Haptic Interaction (안정된 햅틱 인터페이스를 위한 비선형가상커플링)

  • 이문환;이두용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제9권8호
    • /
    • pp.610-615
    • /
    • 2003
  • This paper proposes a nonlinear virtual coupling fur haptic interface, which offers better performance while maintaining stability of the system. The nonlinear virtual coupling is designed based on a human response model. This human response model exploits delay between the human Intention and the actual change of arm impedance. The proposed approach provides with less conservative constraints for the design of stable haptic interface, compared with the traditional passivity condition. This allows increased performance that is verified through experiments.

Design and Implementation of Real-time Haptic Display System (시각장애인을 위한 실시간 햅틱 디스플레이 시스템 설계 및 구현)

  • Jung, Jung-Il;Cho, Jin-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • 제48권2호
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, we propose a haptic display system that can convert Braille and tactual map(braille map) to tactile information recognizable through sense of touch almost in real-time. The proposed system consists of a haptic display hardware device, which actually delivers tactile signal to visually impaired people, and a device control software program, which converts Braille and tactile information to tactile signal and transfers it to the hardware device. Experimental evaluations of the proposed system were performed with 10 visually impaired persons. Experimental results show that the proposed system can provide similar Braille recognition rate and speed to those of existing Braille information devices. In addition, the proposed system converts tactile information to tactile signal under maximum 1.1 seconds, so that it can provide graphic information in almost real-time which is not possible with existing tactile devices, such as Braille printer.

Development of Haptic Glove for Remote Control (이동로봇의 원격제어를 위한 햅틱 글러브 개발)

  • Hwang, Yo-Seop;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제60권5호
    • /
    • pp.1030-1035
    • /
    • 2011
  • The remote control of mobile robot is widely used to perform dangerous and complex tasks such as underwater exploration and cleaning of nuclear reactor. For this purpose, the obstacle avoidance process will proceed to ensure a safe drive. In this paper, we tested that mobile robot drive in which replaced a pipe with a box. After we measured the distance around the obstacle through a sensor of robot, we got the information that changed haptic force from the distance of the obstacle.

A study on control of the Haptic Device use for Robot Arm (다관절 다단의 햅틱장치 제어에 관한 연구)

  • Park, In-man;Kim, Deog-Soo;Park, Jeong-Man
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제18권1호
    • /
    • pp.61-66
    • /
    • 2015
  • Force feedback control is investigated for improving the quality of the haptic feedback in virtual reality applications. We proposed method for control of the haptic device using universal serial bus. and evaluated the characteristics with experimental set.

Control of 2 DOF Haptic Device using USB (USB를 이용한 2자유도 햅틱장치 제어에 관한 연구)

  • Lee, J.B.;Sung, H.K.;Kim, J.H.;Lim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2665-2667
    • /
    • 2002
  • Force feedback control is investigated for improving the quality of the haptic feedback in virtual reality applications. We proposed method for control of the haptic device using universal serial bus(USB), and evaluated the characteristics with experimental set.

  • PDF