• Title/Summary/Keyword: 핵의학 검사

Search Result 663, Processing Time 0.025 seconds

Usefulness of CTAC Shift Revision Method of Artifact by Diaphragm in PET/CT (PET/CT 검사에서 횡격막에 의한 인공물의 CTAC Shift 보정방법의 유용성)

  • Ham, Jun Cheol;Kang, Chun Koo;Cho, Seok Won;Bahn, Young Kag;Lee, Seung Jae;Lim, Han Sang;Kim, Jae Sam;Lee, Chang Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.71-75
    • /
    • 2013
  • Purpose: Currently, decrement revision using LDCT is used in PET/CT. But cold artifacts are often found in decrement revision image by mismatch between LDCT image and Emission image near diaphragm due to patient's respiration. This research studied reduction of cold artifact by patient's respiration using CTAC Shift among revision methods. Materials and Methods: From March to September in 2012, 30 patients who had cold artifacts by respiration were targeted using PET/CT Discovery 600 (GE Healthcare, MI, USA) equipment. Patients with cold artifacts were additionally scan in diaphragm area, and the image shown cold artifacts at whole body test were revised using CTAC Shift. Cold artifacts including image, additional scan image and CTAC Shift revision image were evaluated as 1~5 points with naked eye by one nuclear medicine expert, 4 radiotechnologists with over 5 year experience. Also, standard uptake value of 3 images was compared using paired t-test. Results: Additional scan image and CTAC Shift revision image received relatively higher score in naked eye evaluation than cold artifacts including image. The additional scan image and CTAC Shift revision image had high correlation as the results of ANOVA test of standard uptake value and did not show significant difference. Conclusion: When cold artifacts are appeared by patient's respiration at PET/CT, it causes not only patient inconvenience but troubles in test schedule due to extra radiation exposure and time consumption by additional scan. But if CTAC Shift revision image can be acquired with out additional scan, it is considered to be helped in exact diagnosis without unnecessary extra radiation exposure and additional scan.

  • PDF

The difference of Quantitative Analysis According to the Method of Region of Interest Setting in $^{99m}Tc$-DMSA Renal Scan ($^{99m}Tc$-DMSA 신장 검사에서 ROI 설정 방법에 따른 정량분석 차이에 관한 연구)

  • Lee, Jong-Hun;Shim, Dong-Oh
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.73-77
    • /
    • 2010
  • Purpose: The nuclear medicine technology has been changed. The hard ware is developed so much. Also the soft ware performs a meritorious deed for the development of nuclear medicine technology. We could use the automated region of interest (ROI) instead of manual ROI. We want to know that what difference of quantitative analysis is there between automated ROI and manual ROI Materials and Methods: There are three experimental to make results. The first is what comparing the renal automated ROI and manual ROI. The second is that we compared three threshold ROI that size is difference each others with visible decision. The third is that we compared full, half, quarter automated background, and survey relative function. Results: Although the first has statistically not significant difference, the second and third have significant difference. Threshold, setting smaller threshold then renal outline or bigger, has statistically significant difference (p<0.01). The third is performed with the first experimental. Full background has significant difference, comparing each three type background (p<0.05). Conclusion: The results that there is not significant difference between automated ROI and manual ROI will increase objectivity and operator's convenience. We could know that smaller threshold then renal out line has significant difference in the second experimental. And the third experimental has results because of a increased background nearby live and spleen.

  • PDF

Medical Exposure of Korean by Diagnostic Radiology and Nuclear Medicine Examinations (진단방사선 및 핵의학 검사에 의한 한국인의 의료상 피폭)

  • Kwon, Jeong-Wan;Jeong, Je-Ho;Jang, Ki-Won;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.185-196
    • /
    • 2005
  • Although medical exposure from diagnostic radiology procedures such as conventional x-rays, CT and PET scans is necessary for healthcare purposes, understanding its characteristics and size of the resulting radiation dose to patients is much of worth because medical radiation constitutes the largest artificial source of exposure and the medical exposure is in a trend of fast increasing particularly in the developed society. Annual collective doses and per-caput effective doses from different radiology procedures in Korea were estimated by combining the effective dose estimates per single medical procedure and the health insurance statistics in 2002. Values of the effective dose per single procedure were compiled from different sources including NRPB reports, ICRP 80, MIRDOSE3.1 code and independent computations of the authors. The annual collective dose reaches 27440 man-Sv (diagnostic radiology: 22880 man-Sv, nuclear medicine: 4560 man-Sv) which is reduced to the annual per-caput effective dose of 0.58 mSv by dividing by the national population of 47.7 millions. The collective dose is far larger than that of occupational exposures, in the country operated 16 nuclear power plants in 2002, which is no more than 70 man-Sv in the same year. It is particularly noted that the collective dose due to CT scans amounts 9960 man-Sv. These results implies that the national policy for radiation protection should pay much more attention to optimization of patient doses in medicine.

Usefulness of $^{99m}Tc$-labeled RBC Scan and SPECT in the Diagnosis of Head and Neck Hemangiomas (두경부 혈관종 진단시 $^{99m}Tc$-RBC Scan and SPECT 검사의 유용성)

  • Oh, Shin-Hyun;Roh, Dong-Wook;Ahn, Sha-Ron;Park, Hoon-Hee;Lee, Seung-Jae;Kang, Chun-Goo;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.39-43
    • /
    • 2008
  • Purpose: There are various methods to diagnose hemangioma, such as ultrasonography (US), computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine. However, by development of SPECT imaging, the blood-pool scan using $^{99m}Tc$-labeled red blood cell has been used, because it was non-invasive and the most economical method. Therefore, in this study, we proposed that the usefulness of $^{99m}Tc$-RBC scan and SPECT of the head and neck to diagnose unlocated hemangiomas. Materials and Methods: $^{99m}Tc$-RBC scan and SPECT was performed on 6 patients with doubtful hemangioma (4 person, head; 1 person, neck; 1 person, another). We labeled radiopharmaceutical using modified in vivo method and then, centrifuged it to remove plasma. After a bolus injection of tracer, dynamic perfusion flow images were acquired. Then, anterior, posterior, both lateral static blood-pool images were obtained as early and 4 hours delayed. SPECT was progressed 64 projections per 30 seconds. Each image was interpreted by physicians, Nuclear medicine specialist, and technologist blinded to patient's data. Results: In 5 patients of all the radioactivity of doubtful site didn't change in flow images, but, in blood-pool, delayed and SPECT images, it was increased. So, it was a typical hemangioma finding. The size of lesion was over 2 cm, and it could discriminate as comparing to the delayed and SPECT imaging. On the other hand, in 1 patient, the radioactivity was increased in blood-pool images, but, not in delayed and SPECT images, so, it was proved no hemangioma. Conclusion: Using $^{99m}Tc$-RBC Scan and SPECT, we could diagnose the hemangiomas in head and neck, as well as, liver, more non-invasive, economical, and easy. Therefore, it considered that $^{99m}Tc$-RBC scan and SPECT would offer more useful information for diagnosis of hemangioma, rather than otherimaging such as US, CT, MRI.

  • PDF

Comparison for Glomerular Filtration Rate in Gamma Camera Systems Using Dynamic Renal Phantom System (동적신장팬텀시스템 개발에 따른 장비별 사구체여과율의 비교)

  • Kang, Chun Goo;Park, Hoon-Hee;Oh, Shin Hyun;Lee, Han Wool;Kim, Jung Yul;Oh, Joo Yung;Lee, Ju Young;Kim, Jae Sam;Lee, Chang Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.3-9
    • /
    • 2013
  • Purpose: Currently commercially available phantom can reproduce and evaluate only a static situation, the study is incomplete research on phantom and system which is can confirmed functional situation in the kidney by time through dynamic phantom and blood flow velocity, various difference according to the amount of radioactive. Therefore, through this study, it has produced the dynamic kidney phantom to reproduce images through the dynamic flow of the kidney, it desire to evaluate the usefulness of nuclear medicine imaging. Materials and Methods: The production of the kidney phantom was fabricated based on the normal adult kidney, in order to reproduce the dynamic situation based on the fabricated kidney phantom, in this study it was applied the volume pump that can adjust the speed of blood flow, so it can be integrated continuously radioactive isotopes in the kidney by using $^{99m}Tc-pertechnate$. Used the radioactive isotope was supplied through the two pump. It was confirmed the changes according to the infusion rate, radioactive isotopes and the different injection speeds on the left and right, analysis of the acquired images was done by drawn ten times ROI in order to check the reproducibility of each on the front and rear of the kidney and bladder. Results: Under the same conditions infusion rate 40 mL/min fixed to adjust the pressure of the pump when the radiopharmaceuticals between 2-3 minutes in the most integrated in the kidney phantom was excreted inthe bladder. Glomerular filtration rate (GFR), respectively, by each device SYMBIA 1,091 mL/min, FORTE 1,232 mL/min, ARGUS 1,264 mL/min, INFINIA 1,302 mL/min in that there isno statistically significant difference was found, Tmax values and T1/2 values stars from all equipment with no statistically significant difference was found. CV values of the coefficient of variation less than 5% was found to be repeatable, and to 2.67% of the lowest SYMBIA appeared, INFINIA was the highest in the 4.86%. Conclusion: Through this study, the results showed that the dynamic kidney phantom system is able to similarly reproduce renogram in the actual clinical. Especially, the depicted over time for the flow to be excreted through the kidney into the bladder was adequately reproduce, it is expected to be utilized as basic data to check the quality of the dynamic images. In addition, it is considered to help in the field of functional imaging and quality control.

  • PDF

Development of Dynamic Kidney Phantom System and its Evaluation of Usability of Application in Nuclear Medicine (핵의학 동적 신장팬텀시스템 개발 적용의 유용성 평가)

  • Park, Hoon-Hee;Lee, Juyoung;Kim, Sang-Wook;Lyu, Kwang Yeul;Jin, Gye Hwan
    • Journal of radiological science and technology
    • /
    • v.36 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • Currently, commercially available phantom can reproduce and evaluate only a static situation, the study is incomplete research on phantom and system which is can confirmed functional situation in the kidney by time through dynamic phantom and blood flow velocity, various difference according to the amount of radioactive. Therefore, through this study, it has produced the dynamic kidney phantom to reproduce images through the dynamic flow of the kidney, it desires to evaluate the usefulness of nuclear medicine imaging. The production of the kidney phantom was fabricated based on the normal adult kidney, in order to reproduce the dynamic situation based on the fabricated kidney phantom, in this study, it was applied the volume pump that can adjust the speed of blood flow, so it can be integrated continuously radioactive isotopes in the kidney by using $^{99m}Tc$-pertechnate. Used the radioactive isotope was supplied through the two pump. It was confirmed the changes according to the infusion rate, radioactive isotopes and the different injection speeds on the left and right, analysis of the acquired images was done by drawn five times ROI in order to check the reproducibility of each on the front and rear of the kidney and bladder. Depending on the speed of injection, radioisotope was a lot of integrated and emissions up when adjusting the pressure of the pump as 30 stroke, it was the least integrated and emissions up when adjusting as 40 stroke. The integration of the left & right kidney was not reached in the amount of the highest when adjusting as 10 stroke. In the changes according to the amount of the radioactive isotope, 0.6 mCi(22.2 MBq), 0.8 mCi (29.6 MBq)was showed up similar tendency but, in the result of the different injection 0.8 mCi, it was showed up counts close to double of 0.6 mCi. In the result of the differently injection speed of the left & right kidney, as a result of different conditions that injection speed was 20 stroke through left kidney phantom, the injection speed was 30 stroke through right kidney phantom, it was enough difference in the resulting image can be easily distinguished with the naked eye. Through this study, the results showed that the dynamic kidney phantom system is able to similarly reproduce renogram in the actual clinical practice. Especially, the depicted over time for the flow to be excreted through the kidney into the bladder was adequately reproduce, it is expected to be utilized as basic data to check the quality of the dynamic images. In addition, it is considered to help in the field of functional imaging and quality control.

Comparative Evaluation of 25-OH-VitD and 25-OH-VitD3 by Radioimmunoassay (방사면역 측정법에 의한 25-OH-VitD와 25-OH-VitD3의 비교 평가)

  • Lee, Young-ji;Park, Ji-hye;Lim, Soo-yeon;Cheon, Jun-hong;Lee, Sun-ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • Purpose Vitamin D is essential for maintaining bone health, controling cell proliferation or differentiation, strengthening immune function by controlling calcium metabolism in the body. Vitamin D deficiency can lead to increase the risk of rickets, osteoporosis, cardiovascular disease, diabetes and cancer. Especially, South Korea is one of the highest population proportion of vitamin D deficiency. Accurate determination of levels of 25-OH-VitD or 25-OH-VitD3 in blood serum is required for the diagnosis and treatment of vitamin D deficiency. In this study, radioimmunoassay of 25-OH-VitD and 25-OH-VitD3 was performed and compared to evaluate the effectiveness of Vitamin D radioimmunoassay. Materials and Methods Serum 25-OH-VitD and 25-OH-VitD3 levels were measured using radioimmunoassay. The interrelationship, reproducibility and population distribution rate were evaluated. In addition, the internal quality control was performed at Asan Medical Center from April 2017 to June 2019 and the result of external quality control (Interagency proficiency evaluation) of first and second half of 2018 hosted by the Korean Society of Nuclear Medicine Technology (KSNMT). Both tests were measured by same manufacturer's reagent. Results 25-OH-VitD showed a strong positive correlation on 97 samples, as 25-OH-VitD3 x 0.9 + 0.3 (R>0.9). In repeated measurement, the average Diff(%) value of the reproducibility evaluation of 25-OH-VitD and 25-OH-VitD3 were 7.7% and 7.4%, respectively. Population distribution results showed no statistically significant differences(p>0.05). The resultant value of internal quality control, which measured from April, 2017 to June 2019 in Blood test room of Nuclear Medicine at Asan Medical Center, showed average (CV%) 6.2% and 6.8%, respectively. As a result of the external quality control (interagency proficiency evaluation) Z value obtained under 2.0, as shown below; Conclusion The interrelationship, reproducibility, population distribution rate, internal quality control and external quality control between 25-OH-VitD and 25-OH-VitD3 radioimmunoassay shows superior outcome. Radioimmunoassay, which can be alone measured in the blood as 25-OH-VitD or 25-OH-VitD3, is considered suitable screening tests for the diagnosis of vitamin D deficiency.

Analysis of Variation for Parallel Test between Reagent Lots in in-vitro Laboratory of Nuclear Medicine Department (핵의학 체외검사실에서 시약 lot간 parallel test 시 변이 분석)

  • Chae, Hong Joo;Cheon, Jun Hong;Lee, Sun Ho;Yoo, So Yeon;Yoo, Seon Hee;Park, Ji Hye;Lim, Soo Yeon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.2
    • /
    • pp.51-58
    • /
    • 2019
  • Purpose In in-vitro laboratories of nuclear medicine department, when the reagent lot or reagent lot changes Comparability test or parallel test is performed to determine whether the results between lots are reliable. The most commonly used standard domestic laboratories is to obtain %difference from the difference in results between two lots of reagents, and then many laboratories are set the standard to less than 20% at low concentrations and less than 10% at medium and high concentrations. If the range is deviated from the standard, the test is considered failed and it is repeated until the result falls within the standard range. In this study, several tests are selected that are performed in nuclear medicine in-vitro laboratories to analyze parallel test results and to establish criteria for customized percent difference for each test. Materials and Methods From January to November 2018, the result of parallel test for reagent lot change is analyzed for 7 items including thyroid-stimulating hormone (TSH), free thyroxine (FT4), carcinoembryonic antigen (CEA), CA-125, prostate-specific antigen (PSA), HBs-Ab and Insulin. The RIA-MAT 280 system which adopted the principle of IRMA is used for TSH, FT4, CEA, CA-125 and PSA. TECAN automated dispensing equipment and GAMMA-10 is used to measure insulin test. For the test of HBs-Ab, HAMILTON automated dispensing equipment and Cobra Gamma ray measuring instrument are used. Separate reagent, customized calibrator and quality control materials are used in this experiment. Results 1. TSH [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [14.8 / 4.4 / 3.7 / 0.0 ] C-2(middle concentration) [10.1 / 4.2 / 3.7 / 0.0] 2. FT4 [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [10.0 / 4.2 / 3.9 / 0.0] C-2(high concentration) [9.6 / 3.3 / 3.1 / 0.0 ] 3. CA-125 [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [9.6 / 4.3 / 4.3 / 0.3] C-2(high concentration) [6.5 / 3.5 / 4.3 / 0.4] 4. CEA [%diffrence Max / Mean / median] (P-value by t-test > 0.05) C-1(low concentration) [9.8 / 4.2 / 3.0 / 0.0] C-2(middle concentration) [8.7 / 3.7 / 2.3 / 0.3] 5. PSA [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(low concentration) [15.4 / 7.6 / 8.2 / 0.0] C-2(middle concentration) [8.8 / 4.5 / 4.8 / 0.9] 6. HBs-Ab [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [9.6 / 3.7 / 2.7 / 0.2] C-2(high concentration) [8.9 / 4.1 / 3.6 / 0.3] 7. Insulin [%diffrence Max / Mean / Median] (P-value by t-test > 0.05) C-1(middle concentration) [8.7 / 3.1 / 2.4 / 0.9] C-2(high concentration) [8.3 / 3.2 / 1.5 / 0.1] In some low concentration measurements, the percent difference is found above 10 to nearly 15 percent in result of target value calculated at a lower concentration. In addition, when the value is measured after Standard level 6, which is the highest value of reagents in the dispensing sequence, the result would have been affected by a hook effect. Overall, there was no significant difference in lot change of quality control material (p-value>0.05). Conclusion Variations between reagent lots are not large in immunoradiometric assays. It is likely that this is due to the selection of items that have relatively high detection rate in the immunoradiometric method and several remeasurements. In most test results, the difference was less than 10 percent, which was within the standard range. TSH control level 1 and PSA control level 1, which have low concentration target value, exceeded 10 percent more than twice, but it did not result in a value that was near 20 percent. As a result, it is required to perform a longer period of observation for more homogenized average results and to obtain laboratory-specific acceptance criteria for each item. Also, it is advised to study observations considering various variables.

Study on Image Quality Assessment in Whole Body Bone Scan (전신 뼈검사에서의 영상 평가 연구)

  • Kwon, Oh Jun;Hur, Jae;Lee, Han Wool;Kim, Joo Yeon;Park, Min Soo;Roo, Dong Ook;Kang, Chun Goo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.30-36
    • /
    • 2015
  • Purpose Whole body bone scan, which makes up a largest percentage of nuclear medicine tests, has high sensitivity and resolution about bone lesion like osteomyelitis, fracture and the early detection of primary cancer. However, any standard for valuation has not yet been created except minimum factor. Therefore, in this study, we will analysis the method which show a quantitative evaluation index in whole body bone scan. Materials and Methods This study is conducted among 30 call patients, who visited the hospital from April to September 2014 with no special point of view about bone lesion, using GE INFINIA equipment. Enumerated data is measured mainly with patient's whole body count and lumbar vertabrae, and the things which include CNR (Contrast to Noise ratio), SNR (Signal to Noise ratio) are calculated according to the mean value signal and standard deviation of each lumbar vertabrae. In addition, the numerical value with the abdominal thickness is compared to each value by the change of scan speed and tissue equivalent material throughout the phantom examination, and compared with 1hours deleyed value. Completely, on the scale of ten, 2 reading doctors and 5 skilled radiologists with 5-years experience analysis the correlation between visual analysis with blind test and quantitative calculation. Results The whole body count and interest region count of patients have no significant correlation with visual analysis value throughout the blind test(P<0.05). There is definite correlation among CNR and SNR. In phantom examination, Value of the change was caused by the thickness of the abdomen and the scan speed. And The poor value of the image in the subject as a delay test patient could be confirmed that the increase tendency. Conclusion Now, a standard for valuation has not been created in whole body bone scan except minimum factor. In this study, we can verify the significant correlation with blind test using CNR and SNR and also assure that the scan speed is a important factor to influence the imagine quality from the value. It is possible to be some limit depending on the physiology function and fluid intake of patient even if we progress the evaluation in same condition include same injection amount, same scan speed and so on. However, that we prove the significant evaluation index by presenting quantitative calculation objectively could be considered academic value.

  • PDF

Measurement of the Spatial Dose Rates from Radioactive Patients during Nuclear Medicine Studies (핵의학 검사에서 환자로부터의 공간선량률 측정)

  • Park, Myeong-Hwan;Lee, Jon-Il
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.73-76
    • /
    • 2002
  • In order to evaluate the exposure to the radiologic technologists from patients who had been administrated with radiopharmaceuticals, we measured the spatial dose rates at 5 cm, 50 cm, and 100 cm from skin surface of patients using an proportional digital surveymeter, both 5 min after injection and right before the studies. In results, the exposure to the technologists in each procedure was small, compared nth the dose limits of the medical workers. However, the dose-response relationships in cancer and hereditary effects, referred to as the stochastic effects, have been assumed linear and no threshold models ; therefore, the exposure should be minimized. For this purpose, the measurements of spatial dose rate distributions were thought to be useful.

  • PDF