• Title/Summary/Keyword: 핵심구 추출

검색결과 28건 처리시간 0.034초

Adjusting Weights of Single-word and Multi-word Terms for Keyphrase Extraction from Article Text

  • Kang, In-Su
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권8호
    • /
    • pp.47-54
    • /
    • 2021
  • 핵심구 추출은 문서의 내용을 대표하는 주제 용어를 자동 추출하는 작업이다. 비지도 방식 핵심구 추출에서는 문서 텍스트로부터 핵심구 후보 용어가 되는 단어나 구를 추출하고 후보 용어에 부여된 중요도에 기반하여 최종 핵심구들이 선택된다. 본 논문에서는 비지도 방식 핵심구 후보 용어 중요도 계산에서 단어 유형 후보 용어와 구 유형 후보 용어의 중요도를 조정하는 방법을 제안한다. 이를 위해 핵심구 추출 대상 문서 텍스트로부터 후보 용어 집합의 타입-토큰 비율과 고빈도 대표 용어의 정보량을 단어 유형과 구 유형으로 구분하여 수집한 후 중요도 조정에 활용한다. 실험에서는 영어로 작성된 full-text 논문을 대상으로 구축된 4개 서로 다른 핵심구 추출 평가집합들을 사용하여 성능 평가를 수행하였고, 제안된 중요도 조정 방법은 3개 평가집합들에서 베이스 라인 및 비교 방법들보다 높은 성능을 보였다.

학술대회 및 저널별 기술 핵심구 추출 모델 (A Keyphrase Extraction Model for Each Conference or Journal)

  • 정현지;장광선;김태현;신동구
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.81-83
    • /
    • 2022
  • 연구 동향을 파악하는 것은 연구 수행 시 필수적인 요소이다. 대부분의 연구자들은 관심분야의 학술대회 및 저널을 대표하는 기술 핵심구나 관심 분야를 검색함으로써 연구 동향을 파악한다. 하지만, 최근 인공지능과 같은 특정 분야의 경우 한 개의 학술대회에 한 해당 수백~수천 개의 논문이 출간되기 때문에 전체 분야의 경향성을 파악하는 데 어려움이 존재한다. 본 논문에서는 학술대회 또는 저널 제목을 활용하여 기술 핵심구를 자동으로 추출함으로써 연도별 학술대회 및 저널의 연구 동향 파악을 지원하고자 한다. 핵심구 추출은 문장 또는 문서를 대표하는 주요 구문을 추출하는 작업으로서 검색, 요약, 내용 파악 등을 위해 근간이 되는 기술이다. 기존 사전학습 언어모델 기반의 핵심구 추출 모델은 문서 단위의 긴 텍스트를 기준으로 모델링 하였기 때문에 제목 단위의 짧은 텍스트에서는 성능이 낮아진다는 단점이 존재한다. 본 논문에서는 짧은 텍스트에 강인하면서 단어 자체의 중요도를 고려한 학술대회 및 저널의 기술 핵심구 추출 모델을 제안하고자 한다.

  • PDF

자동색인을 위한 학습기반 주요 단어(핵심어) 추출에 관한 연구 (Learning-based Automatic Keyphrase Indexing from Korean Scientific LIS Articles)

  • 김혜진;정유경
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2017년도 제24회 학술대회 논문집
    • /
    • pp.15-18
    • /
    • 2017
  • 학술 데이터베이스를 통해 방대한 양의 텍스트 데이터에 대한 접근이 가능해지면서, 많은 데이터로부터 중요한 정보를 자동으로 추출하는 것에 대한 필요성 또한 증가하였다. 특히, 텍스트 데이터로부터 중요한 단어나 단어구를 선별하여 자동으로 추출하는 기법은 자료의 효과적인 관리와 정보검색 등 다양한 응용분야에 적용될 수 있는 핵심적인 기술임에도, 한글 텍스트를 대상으로 한 연구는 많이 이루어지지 않고 있다. 기존의 한글 텍스트를 대상으로 한 핵심어 또는 핵심어구 추출 연구들은 단어의 빈도나 동시출현 빈도, 이를 변형한 단어 가중치 등에 근거하여 핵심어(구)를 식별하는 수준에 그쳐있다. 이에 본 연구는 한글 학술논문의 초록으로부터 추출한 다양한 자질 요소들을 학습하여 핵심어(구)를 추출하는 모델을 제안하였고 그 성능을 평가하였다.

  • PDF

문제 핵심 어휘를 이용한 영어 논술 주제 적합성 평가 (Assessment of English Essay Topic Suitability using Keyword of Instruction)

  • 고대옥;김민정;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.148-153
    • /
    • 2012
  • 본 논문에서는 그동안 영어 자동 평가에서 다루지 않은 문제와 답안의 적합성에 대한 평가를 시도한다. 답안이 주어진 문제에 적합한지를 평가하기 위해 문제에서 내용어를 중심으로 핵심어를 추출하며, 이렇게 추출한 핵심어와 각 답안의 적합성을 코사인 상관계수를 이용하여 구해본다. 한 문제에서 추출 가능한 핵심어가 매우 한정되어 있으므로 추가적으로 워드넷의 관련어나 예시 답안을 활용하여 확장한 핵심어 목록으로 실험을 하였으며, 실험 결과를 통해 핵심어를 이용한 답안과 문제의 적합성 평가가 가능함을 보였다.

  • PDF

뉴스 기사 키워드 추출을 위한 구묶음 주석 말뭉치 구축 (Chunking Annotation Corpus Construction for Keyword Extraction in News Domain)

  • 김태영;김정아;김보희;오효정
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.595-597
    • /
    • 2020
  • 빅데이터 시대에서 대용량 문서의 의미를 자동으로 파악하기 위해서는 문서 내에서 주제 및 내용을 포괄하는 핵심 단어가 키워드 단위로 추출되어야 한다. 문서에서 키워드가 될 수 있는 단위는 복합명사를 포함한 단어가 될 수도, 그 이상의 묶음이 될 수도 있다. 한국어는 언어적 특성상 구묶음 개념이 적용되는 데, 이를 통해 주요 키워드가 될 수 있는 말덩이 추출이 가능하다. 따라서 본 연구에서는 문서에서 단어뿐만 아니라 다양한 단위의 키워드 묶음을 태깅하는 가이드라인 정의를 비롯해 태깅도구를 활용한 코퍼스 구축 방법론을 고도화하고, 그 방법론을 실제로 뉴스 도메인에 적용하여 주석 말뭉치를 구축함으로써 검증하였다. 본 연구의 결과물은 텍스트 문서의 내용을 파악하고 분석이 필요한 모든 텍스트마이닝 관련 기술의 기초 작업으로 활용 가능하다.

  • PDF

고성능 한국어 형태소 분석을 위한 어미 분류 (A Classification of Endings for an Efficient Morphological Analysis of Korean)

  • 은종진;박선영
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 한글 및 한국어 정보처리
    • /
    • pp.41-47
    • /
    • 2000
  • 한국어 형태소 분석에서 가장 중요한 부분 중 하나가 바로 용언구(서술어)를 분석하는 것이다. 형태소 분석 뿐만 아니라 구문 분석, 의미 분석 단계에서도 정확한 용언구 분석은 매우 중요한 작업 중의 하나이다. 또한, 용언구에는 [체언+지정사+어미] 패턴도 포함되므로, 정보 검색기의 핵심 모듈인 명사 추출기(색인기)의 성능에도 용언구의 분석은 높은 비중을 차지한다. 본 논문에서는 용언구 분석의 정확성을 높이고, 견고하면서 속도도 향상시킬 수 있는 방법으로 새로운 어미 분류를 제안하고자 한다.

  • PDF

고성능 한국어 형태소 분석을 위한 어미 분류 (A Classification of Endings for an Efficient Morphological Analysis of Korean)

  • 은종진;박선영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2000년도 제12회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.41-47
    • /
    • 2000
  • 한국어 형태소 분석에서 가장 중요한 부분 중 하나가 바로 용언구(서술어)를 분석하는 것이다. 형태소 분석 뿐만 아니라 구문 분석, 의미 분석 단계에서도 정확한 용언구 분석은 매우 중요한 작업 중의 하나이다. 또한, 용언구에는 [체언+지정사+어미] 패턴도 포함되므로, 정보검색기의 핵심 모듈인 명사 추출기(색인기)의 성능에도 용언구의 분석은 높은 비중을 차지한다. 본 논문에서는 용언구 분석의 정확성을 높이고, 견고하면서 속도도 향상시킬 수 있는 방법으로 새로운 어미 분류를 제안하고자 한다.

  • PDF

COSMIC : 영역지식과 시각정보를 이용한 내용기반 멀티미디어 검색 시스템의 설계 및 구현 (COSMIC : Design and Implementation of a Content-Based Multimedia Retrieval System using Domain Knowledge and Visual Information)

  • 김덕환;김시우;박광순;이병구;차광호;정진완
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제5권1호
    • /
    • pp.14-28
    • /
    • 1999
  • 최근 멀티미디어 데이터로부터 내용에 대한 정보를 추출하여 데이터베이스에 저장하고 내용에 기반한 질의를 수행하도록 하는 내용 기반 검색 시스템이 중요한 핵심 기술로 대두되고 있다. 본 논문에서는 내용 기반 멀티미디어 검색 시스템인 COSMIC(Content Based Multimedia Information Processor)의 설계 및 구현에 관하여 기술한다. COSMIC은 대용량 이미지 데이터로부터 자동으로 추출된 시각적 특징 데이터들을 다차원 점접근 방법(Point Access Method)인 HG-트리를 이용하여 색인하고 예제 이미지와 사용자가 그린 스케치에 의한 시각적 질의를 제공한다. 또한 COSMIC은 비디오 데이터로부터 추출된 다양한 의미 정보를 이용하여 의미 질의를 제공한다. COSMIC의 유효성을 입증하기 위해서 다양한 시각적 질의와 이미 질의를 이용한 실험을 수행하였다.

Monolithic high voltage IC를 위한 BCD 공정 및 소자설계에 관한 연구 (A study on the BCD process and device design for monolithic HV-ICs)

  • 곽원영;구용서;안철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.477-480
    • /
    • 1998
  • 본 연구에서는 정보통신 시스템 민 전자 제어 시스템, atuomobile 저자부문의 핵심부품으로 사용가능한 HV-IC영 BCD 공정 및 소자를 설계하였다. 60V 이상의 bipolr, 20V급 HV-CMOS 소자기술을 one-chip에 구현하는 고내압 BCD 소자구조를 제안, 설계하고 시뮬레이션을 통하여 고안된 소자구조를 검증하여 최적화된 공정 및 소자 변수를 추출하였다.

  • PDF

AI를 활용한 메타데이터 추출 및 웹서비스용 메타데이터 고도화 연구 (Metadata extraction using AI and advanced metadata research for web services)

  • 박성환
    • 문화기술의 융합
    • /
    • 제10권2호
    • /
    • pp.499-503
    • /
    • 2024
  • 방송 프로그램은 자체 방송 송출 외에도 인터넷 다시 보기, OTT, IPTV 서비스 등 다양한 매체에 제공되고 있다. 이 경우 콘텐츠 특성을 잘 나타내는 검색용 키워드 제공은 필수적이다. 방송사에서는 제작 단계, 아카이브 단계 등에서 주요 키워드를 수동으로 입력하는 방법을 주로 사용한다. 이 방식은 양적으로는 핵심 메타데이터 확보에 부족하고, 내용 면에서도 타 매체 서비스에서 콘텐츠 추천과 검색에 한계를 드러낸다. 본 연구는 EBS에서 개발한 DTV 자막방송 서버를 통해 사전 아카이빙 된 폐쇄형 자막 데이터를 활용하여 다수의 메타데이터를 확보하는 방법을 구현했다. 먼저 구글의 자연어 처리 AI 기술을 적용하여 핵심 메타데이터를 자동으로 추출하였다. 다음 단계는 핵심 연구 내용으로 우선순위와 콘텐츠 특성을 반영하여 핵심 메타데이터를 찾는 방법을 제안한다. 차별화된 메타데이터 가중치를 구하는 기술로는 TF-IDF 계산법을 응용하여 중요도를 분류했다. 실험 결과 성공적인 가중치 데이터를 얻었다. 이 연구로 확보한 문자열 메타데이터는 추후 문자열 유사도 측정 연구와 결합하면 타 매체에 제공하는 콘텐츠 서비스에서 정교한 콘텐츠 추천용 메타데이터를 확보하는 기반이 된다.