• Title/Summary/Keyword: 해저지층탐사

Search Result 61, Processing Time 0.024 seconds

해상 탄성파탐사 기법을 이용한 단층파쇄대 분석 적용사례

  • 이준석;최세훈;김재관;최원석
    • Geotechnical Engineering
    • /
    • v.20 no.4
    • /
    • pp.38-49
    • /
    • 2004
  • 해상 반사법탐사는 해저 지반의 지층구조를 파악하는 기술로서 해저지층에 부존하는 가스나 골재 등 해저자원 탐사와 해저의 저장시설 건설, 파이프라인 설치 등 다양한 해양 토목공사를 위한 지반조사에 사용된다. 해상 반사법탐사의 기본적인 원리는 해수면 근처에서 인공적으로 음파를 발생시켜 해저면 하부의 지층으로 침투시키면 서로 다른 물성을 갖는 지층의 경계면에서 일부 음파는 반사되는데, 이 반사파를 수신하는 것이다. 탐사과정에서 얻어진 트레이스에는 반사파 이외에도 직접파, 다중반사파와 같은 잡음이 섞여있는데 자료처리를 통해 탄성파 단면도를 작성하고, 이를 해석하여 해저지반의 지질학적 구조를 파악하는 것이 해상 반사법탐사의 목적이다.

  • PDF

Suppression of Swell Effect in 3.5KHz Subbottom Profiler Data (3.5KHz 천부지층탐사자료의 너울영향제거)

  • 이호영;구남형;박근필;김정기;김원식;강동효
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.95-99
    • /
    • 2002
  • 3.5KHz subbottom profiling systems are useful for delineating of shallow (up to 10~100m below the sea bottom) geological structure. These systems are generally used to image geological structures with less than 1m of vertical resolution. However swell in the sea is quite often higher than 1m, causing degradation in the quality of the 3.5KHz subbottom profiles. In this paper, we show the quality of digitally recorded data can be enhanced by the suppression of swell effect. Prior to suppression of swell effect, sea bottom detection procedure was applied using the characteristics that the amplitude of sea bottom reflection is high. To suppress the swell effect, we applied moving average method and high-cut filtering method using the extracted water depth of adjacent traces. Acceptable results were obtained from both methods. In the case of bad quality data or shallow data interfered with direct wave, the suppression of swell effect is difficult due to incorrect sea bottom detection.

P-Impedance Inversion in the Shallow Sediment of the Korea Strait by Integrating Core Laboratory Data and the Seismic Section (심부 시추코어 실험실 분석자료와 탄성파 탐사자료 통합 분석을 통한 대한해협 천부 퇴적층 임피던스 도출)

  • Snons Cheong;Gwang Soo Lee;Woohyun Son;Gil Young Kim;Dong Geun Yoo;Yunseok Choi
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.138-149
    • /
    • 2023
  • In geoscience and engineering the geological characteristics of sediment strata is crucial and possible if reliable borehole logging and seismic data are available. To investigate the characteristics of the shallow strata in the Korea Strait, laboratory sonic logs were obtained from deep borehole data and seismic section. In this study, we integrated and analyzed the sonic log data obtained from the drilling core (down to a depth of 200 m below the seabed) and multichannel seismic section. The correlation value was increased from 15% to 45% through time-depth conversion. An initial model of P-wave impedance was set, and the results were compared by performing model-based, band-limited, and sparse-spike inversions. The derived P-impedance distributions exhibited differences between sediment-dominant and unconsolidated layers. The P-impedance inversion process can be used as a framework for an integrated analysis of additional core logs and seismic data in the future. Furthermore, the derived P-impedance can be used to detect shallow gas-saturated regions or faults in the shallow sediment. As domestic deep drilling is being performed continuously for identifying the characteristics of carbon dioxide storage candidates and evaluating resources, the applicability of the integrated inversion will increase in the future.

Case Study of Ultra High Resolution Shallow Acoustic Profiling - Discrimination of the Marine Contaminated Sediment and Burial Depth Inspection of Submarine Cable (초고해상 천부음향탐사 사례 - 오염퇴적층 구분과 해저케이블 매설 검측)

  • Jung, Baek-Hoon;Lee, Yong-Kuk;Kim, Seong-Ryul;Shin, Dong-Hyeok;Jou, Hyeong-Tae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.79-84
    • /
    • 2008
  • Compared to conventional high resolution acoustic profiling, ultra high resolution shallow acoustic profiling is limited in penetration, yet it provides resolution suitable for detailed seabed investigation in the shallow waters. Possible applications include search of buried pipeline, ship wrecks, and other artificial objects through the detailed mapping of thickness and structure of the upper sedimentary layers. In this study, contaminated sediments were discriminated by the correlation of ultra high resolution profiles with geologic data. In addition, the burial depth of submarine cable was measured by the interpretation of acoustic anomalies in the profiles.

  • PDF

Shallow Gas Exploration in the Pohang Basin Transition Zone (포항분지 전이대에서 천부가스 탐사)

  • Lee, Donghoon;Kim, Byoung-Yeop;Kim, Ji-Soo;Jang, Seonghyung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • For surveying shallow gas reservoirs in the Pohang basin, we proposed a seismic exploration method applicable to the transition zone in which land and marine areas are connected. We designed the seismic acquisition geometry considering both environments. We installed land nodal receivers on the ground and employed vibroseis and airgun sources in both land and marine areas. For seismic exploration in the transition zone, specific acquisition and processing techniques are required to ensure precise matching of reflectors at the boundary between the onshore and offshore regions. To enhance the continuity of reflection events on the seismic section, we performed amplitude and phase corrections with respect to the source types and applied a static correction. Following these processing steps, we obtained a seismic section showing connected reflectors around the boundary in the transition zone. We anticipate that our proposed seismic exploration method can also be used for fault detection in the transition zone.

Ultra High Resolution Shallow Acoustic Profiling using the Parametric Echo Sounder: Discrimination of Marine Contaminated Sediments and Burial Depth Inspection of the Submarine Cable (비선형 측심기를 이용한 초고해상 천부음향탐사: 오염퇴적층 구분과 해저케이블 매설 검측)

  • Jung, Seom-Kyu;Lee, Yong-Kuk;Kim, Seong-Ryul;Oh, Jae-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1222-1229
    • /
    • 2010
  • Compared to conventional high resolution acoustic profiling, ultra high resolution shallow acoustic profiling using parametric echo sounder is limited in penetration, yet it provides resolution suitable for detailed seabed investigation in the shallow waters. The parametric sub-bottom profiler system provides not only the exact determination of water depth, but also the detailed information about sediment layers and sub-bottom structures. Possible applications include dredging project, search of buried pipeline, ship wrecks, and other artificial objects through the detailed mapping of thickness and structure of the upper sedimentary layers. In this study, contaminated sediments were discriminated by the correlation of ultra high resolution profiles with geologic data. In addition, the burial depth of the submarine cable was measured by the interpretation of acoustic anomalies in the profiles.

Swell Effect Correction of Sub-bottom Profiler Data with Weak Sea Bottom Signal (해저면 신호가 약한 천부해저지층 탐사자료의 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun;Son, Woohyun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.181-196
    • /
    • 2015
  • A 3.5 kHz or chirp sub-bottom profiling survey is widely used in the marine geological and engineering purpose exploration. However, swells in the sea degrade the quality of the survey data. The horizontal continuity of profiler data can be enhanced and the quality can be improved by correcting the influence of the swell. Accurate detection of sea bottom location is important in correcting the swell effect. In this study, we tried to pick sea bottom locations by finding the position of crossing a threshold of the maximum value for the raw data and transformed data of envelope or energy ratio. However, in case of the low-quality data where the sea bottom signals are not clear due to sea wave noise, automatic sea bottom detection at the individual traces was not successful. We corrected the mispicks for the low quality data and obtained satisfactory results by picking a sea bottom within a range considering the previous average of sea bottom, and excluding unreliable big-difference picks. In case of trace by trace picking, fewest mispicks were found when using energy ratio data. In case of picking considering the previous average, the correction result was relatively satisfactory when using raw data.

Seafloor Topographic Survey with Bedrock (기반암 정보를 포함한 해저 지형 조사 연구)

  • Kim, Myoung-Bae;Kwak, Kang-Yul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.343-349
    • /
    • 2011
  • Seabed topography and marine site survey should be performed first in the design and construction of marine structures. We could successfully acquire the seafloor topography information can be obtained by bathymetric survey and side scan sonar and the sediment layer thickness and 3D bedrock depth by seismic reflection. It is necessary to apply carry out the integrated interpretation to each other in the ocean civil Eng. In this paper, we have obtained information on the sea bottom topography and water depth at the same time using interferometer technique and on the basement depth by seismic reflection. We have performed to assess the proposed method on the seafloor topographic survey with bedrock.

Fusion of 3D seismic exploration and seafloor geochemical survey for methane hydrate exploration (메탄 하이드레이트 탐사를 위한 3 차원 탄성파 탐사와 해저면 지구화학탐사의 융합 기술)

  • Nagakubo, Sadao;Kobayashi, Toshiaki;Fujii, Tetsuya;Inamori, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • The MH21 Research Consortium has conducted a high-resolution 3D seismic survey and a seafloor geochemical survey, to explore methane hydrate reservoirs in the eastern Nankai Trough, offshore Japan. Excellent geological information about shallow formations was obtained from the high-resolution 3D seismic survey, which was designed to image the shallow formations where methane hydrates exist. The information is useful in constructing a geological and geochemical model, and especially to understand the complex geology of seafloor, including geochemical manifestations and the structure of migration conduits for methane gas or methane-bearing fluid. By comparing methane seep sites observed by submersibles with seismic sections, some significant relationships between methane hydrate reservoirs, free gas accumulations below the seafloor, and seafloor manifestations are recognised. Bathymetric charts and seafloor reflection amplitude maps, constructed from seismic reflections from the seafloor, are also useful in understanding the relationships over a vast area. A new geochemical seafloor survey targeted by these maps is required. The relationships between methane hydrate reservoirs and seafloor manifestations are becoming clearer from interpretation of high-resolution 3D seismic data. The MH21 Research Consortium will continue to conduct seafloor geochemical surveys based on the geological and geochemical model constructed from high-resolution 3D seismic data analysis. In this paper, we introduce a basis for exploration of methane hydrate reservoirs in Japan by fusion of 3D seismic exploration and seafloor geochemical surveys.

Swell Effect Correction for the High-resolution Marine Seismic Data (고해상 해저 탄성파 탐사자료에 대한 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.240-249
    • /
    • 2013
  • The seismic data quality of marine geological and engineering survey deteriorates because of the sea swell. We often conduct a marine survey when the swell height is about 1 ~ 2 m. The swell effect correction is required to enhance the horizontal continuity of seismic data and satisfy the resolution less than 1 m. We applied the swell correction to the 8 channel high-resolution airgun seismic data and 3.5 kHz subbottom profiler (SBP) data. The correct sea bottom detection is important for the swell correction. To detect the sea bottom, we used maximum amplitude of seismic signal around the expected sea bottom, and picked the first increasing point larger than threshold value related with the maximum amplitude. To find sea bottom easily in the case of the low quality data, we transformed the input data to envelope data or the cross-correlated data using the sea bottom wavelet. We averaged the picked sea bottom depths and calculated the correction values. The maximum correction of the airgun data was about 0.8 m and the maximum correction of two kinds of 3.5 kHz SBP data was 0.5 m and 2.0 m respectively. We enhanced the continuity of the subsurface layer and produced the high quality seismic section using the proper methods of swell correction.