DOI QR코드

DOI QR Code

Swell Effect Correction of Sub-bottom Profiler Data with Weak Sea Bottom Signal

해저면 신호가 약한 천부해저지층 탐사자료의 너울영향 보정

  • Lee, Ho-Young (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Koo, Nam-Hyung (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Wonsik (Pohang Branch, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Byoung-Yeop (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cheong, Snons (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Young-Jun (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Son, Woohyun (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이호영 (한국지질자원연구원 석유해저연구본부) ;
  • 구남형 (한국지질자원연구원 석유해저연구본부) ;
  • 김원식 (한국지질자원연구원 포항지질자원실증연구센터) ;
  • 김병엽 (한국지질자원연구원 석유해저연구본부) ;
  • 정순홍 (한국지질자원연구원 석유해저연구본부) ;
  • 김영준 (한국지질자원연구원 석유해저연구본부) ;
  • 손우현 (한국지질자원연구원 석유해저연구본부)
  • Received : 2015.09.14
  • Accepted : 2015.11.03
  • Published : 2015.11.30

Abstract

A 3.5 kHz or chirp sub-bottom profiling survey is widely used in the marine geological and engineering purpose exploration. However, swells in the sea degrade the quality of the survey data. The horizontal continuity of profiler data can be enhanced and the quality can be improved by correcting the influence of the swell. Accurate detection of sea bottom location is important in correcting the swell effect. In this study, we tried to pick sea bottom locations by finding the position of crossing a threshold of the maximum value for the raw data and transformed data of envelope or energy ratio. However, in case of the low-quality data where the sea bottom signals are not clear due to sea wave noise, automatic sea bottom detection at the individual traces was not successful. We corrected the mispicks for the low quality data and obtained satisfactory results by picking a sea bottom within a range considering the previous average of sea bottom, and excluding unreliable big-difference picks. In case of trace by trace picking, fewest mispicks were found when using energy ratio data. In case of picking considering the previous average, the correction result was relatively satisfactory when using raw data.

3.5 kHz 또는 첩(chirp) 천부해저 지층탐사는 해양지질 조사나 엔지니어링 탐사에 널리 사용되고 있다. 그러나 해상에서의 너울은 탐사자료의 품질을 저하시킨다. 이와 같은 너울의 영향을 보정함으로써 연속성이 향상된 탐사자료를 얻을 수 있다. 정확한 해저면의 위치 선정은 너울영향 보정에 매우 중요하다. 이 연구에서는 원자료와 이를 엔벨로프 또는 에너지비율자료로 변형시킨 자료들에 대해 최대 진폭값의 일정 기준을 초과하는 지점을 선정하는 방법으로 해저면 위치 선정을 시도하였다. 그러나 파도의 잡음으로 인하여 해저면 신호가 분명하지 않은 품질이 낮은 자료에서는 개별 트레이스에서의 자동적인 해저면 위치 선정이 어려웠다. 이 연구에서는 이전 트레이스에서 구한 해저면 평균값을 고려하여 해저면 선정범위 내에서 해저면을 선정하는 방법과, 선정 결과의 신뢰도가 낮은 경우에는 이를 보정에서 제외하는 방법을 사용함으로써 품질이 낮은 자료의 해저면 선정에서도 만족스러운 결과를 얻었다. 개별 트레이스에서 해저면을 선정할 때에는 에너지비율자료를 사용한 경우에 오류가 가장 적었으며, 이전 트레이스 해저면 평균값을 고려하는 방법에서는 원자료를 직접 사용한 경우에 보정결과가 비교적 양호하였다.

Keywords

References

  1. Akram, J., 2011, Automatic P-wave arrival time picking method for seismic and microseismic data, CSEG Conference Abstracts.
  2. Allen, R., 1978, Automatic earthquake recognition and timing from single traces, Bulletin of the Seismological Society of America, 68, 1521-1532.
  3. Chen, Z., and Stewart, R., 2006, A multi-window algorithm for real-time automatic detection and picking of P-phases of seismic events, CREWES Research Report, 18, 15.1-15.9.
  4. Coppens, F., 1985, First arrivals picking on common-offset trace collections for automatic estimation of static corrections, Geophysical Prospecting, 33, 1212-1231. https://doi.org/10.1111/j.1365-2478.1985.tb01360.x
  5. Geyer, R. A., 1983, CRC Handbook of geophysical exploration at sea, CRC Press, Inc, Florida, 77-122.
  6. Gutowski, M., Breitzke, M., and Spiess, V., 2002, Fast static correction methods for high-frequency multichannel marine seismic reflection data: A high-resolution seismic study of channel-levee systems on the Bengal Fan, Marine Geophysical Research, 23, 57-75. https://doi.org/10.1023/A:1021240415963
  7. Kanasewich, E. R., 1981, Time sequence analysis in geophysics, Univ. of Alberta Press, Edmonton, Alberta, Canada, 361-370.
  8. Kim, J. C., Lee, H. Y., Kim, J. S., and Kang, D. H., 2003, Suppression of swell effect in high-resolution marine seismic data using cross-correlation scheme, Journal of the Korean Geophysical Society, 6, 31-38.
  9. Kim, J.-H., and Kim, H.-D., 2005, Automatic bottom detection and horizontal distance correction of the high-resolution marine seismic profile, Proceedings of the International Offshore and Polar Engineering Conference, 273-277.
  10. Lee, H.-Y., Hyun, B. K., and Kong Y. S., 1996, PC-based acquisition and processing of high-resolution marine seismic data, Geophysics, 61, 287-296.
  11. Lee, H.-Y., Kim, W., Koo, N.-H., Park, K.-P., Yoo, D.-G., Kang, D.-H., Kim, Y.-G., Seo, G.-S., and Hwang, K.-D., 2014, Resolution analysis of shallow marine seismic data acquired using an airgun and an 8-channel streamer cable, Journal of Applied Geophysics, 105, 203-212. https://doi.org/10.1016/j.jappgeo.2014.03.021
  12. Lee, H.-Y., Koo, N.-H., Kim, W., Kim, B.-Y., Cheong, S., and Kim, Y.-J., 2013, Swell effect correction for the high-resolution marine seismic data, Jigu-Mulli-wa-Mulli-Tamsa, 16, 240-249.
  13. Lee, H.-Y., Koo, N.-H., Park, K.-P., Kim, J.-K., Kim, W.-S., and Kang, D.-H., 2002, Suppression of swell effect in 3.5 kHz subbottom profiler data, The Sea(Bada), 7, 95-99.
  14. Lee, H.-Y., Park, K.-P., Koo, N.-H., Yoo, D.-G., Kang, D.-H., Kim, Y.-G., Hwang, K.-D., and Kim, J.-C., 2004, High-resolution shallow marine seismic surveys off Busan and Pohang, Korea using a small-scale multichannel system, Journal of Applied Geophysics, 56, 1-15. https://doi.org/10.1016/j.jappgeo.2004.03.003
  15. Lericolais, G., Allenou, J. P., Berne, S., and Morvan, P., 1990, A new system for acquisition and processing of very high-resolution seismic reflection data, Geophysics, 55, 1036-1046. https://doi.org/10.1190/1.1442916
  16. McGee, T. M., 1995, High-resolution marine reflection profiling for engineering and environmental purposes, part B: Digitizing analogue seismic signals, Journal of Applied Geophysics, 33, 287-296.
  17. Muller, C., Woelz, S., Ersoy, Y., Boyce, J., Jokisch, T., Wendt, G., and Rabbel, W., 2009, Ultra-high-resolution marine 2D-3D seismic investigation of the Liman Tepe/Karantina Island archaeological site (Urla/Turkey), Journal of Applied Geophysics, 68, 124-134. https://doi.org/10.1016/j.jappgeo.2008.10.015
  18. Quinn, R., Bull, J. M., and Dix, J. K., 1998, Optimal processing of marine high-resolution seismic reflection (chirp) data, Marine Geophysical Research, 20, 13-20. https://doi.org/10.1023/A:1004349805280
  19. Rodriguez, I. V., 2011, Automatic time-picking of microseismic data combining STA/LTA and the stationary discrete wavelet transform, CSEG Conference Abstracts.
  20. Sabbione, J. I., and Velis, D., 2010, Automatic first-breaks picking: New strategies and algorithms, Geophysics, 75, V67-V76. https://doi.org/10.1190/1.3463703
  21. Sabbione, J. I., and Velis, D. R., 2013, A robust method for microseismic event detection based on automatic phase pickers, Journal of Applied Geophysics, 99, 42-50. https://doi.org/10.1016/j.jappgeo.2013.07.011
  22. Song, J., Cao, X., Xu, W., and Yang, J., 2013, First arrival time auto-picking method based on multi-time windows energy ratio, Energy Science and Technology CSCanada, 6, 79-89.
  23. Wong, J., Han, L., Bancroft, J., and Stewart, R., 2009, Automatic time-picking of first arrivals on noisy microseismic data, CSEG Conference Abstracts.