DOI QR코드

DOI QR Code

Study on Microseismic Data Acquisition and Survey Design through Field Experiments of Hydraulic Fracturing and Artificial Blasting

수압파쇄 및 인공발파 현장실험을 통한 미소지진 계측 및 설계에 대한 연구

  • Received : 2015.11.05
  • Accepted : 2015.11.25
  • Published : 2015.11.30

Abstract

The purpose of this study is to ensure microseismic data acquisition technique for hydraulic fracturing imaging at the site of shale gas development. For this, microseismic data acquisition was performed during hydraulic fracturing and artificial blasting at a site bearing shale layers. Measured microseismic event data during the hydraulic fracturing have the very small amplitude of 0.001 mm/sec ~ 0.003 mm/sec and the frequency contents of 5 Hz ~ 20 Hz range. Meanwhile microseismic event data acquired during artificial blasting have the bigger amplitude (0.011 mm/sec ~ 0.302 mm/sec) than hydraulic fracturing event data and their frequency contents have the range of 5 Hz ~ 2 kHz. For microseismic data acquisition design, the selection of appropriate instrumentation including sensors and the recording system, the determination of sensor array and the deployment range were investigated based on the theoretical data and field application experiences.

이 연구는 셰일가스 개발을 위한 수압파쇄 미소지진 현장계측 기술 확보를 목표로 하고 있다. 이를 위해 셰일층이 부존하는 현장을 선정하여 수압파쇄 실험 및 인공발파 실험을 실시하여 미소지진 계측을 수행하였으며 이를 통해 현장계측에서 고려되어야 할 사항을 검토하였다. 수압파쇄시 계측된 미소지진 자료는 진폭이 0.001 mm/sec ~ 0.003 mm/sec 정도로 그 에너지가 대단히 적었으며 주파수 내용은 5 Hz ~ 20 Hz 범위였다. 인공발파시 계측된 미소지진 자료는 수압파쇄보다 대단히 큰 진폭(0.011 mm/sec ~ 0.302 mm/sec)을 나타내었으며 주파수 범위도 5 Hz ~ 2 kHz로 넓게 나타났다. 미소지진 현장계측 설계를 위해 이론적인 자료 및 현장 경험 등을 토대로 미소지진 현장계측에 적합한 센서 및 계측장비의 선정, 수진기 배열 또는 배치 범위 등에 대해 고찰하였다.

Keywords

References

  1. Evans, K. F., Cornet, F. H., Hashida, T., Hayashi, K., Ito, T., Matsuki, K., and Wallroth, T., 1999, Stress and rock mechanics issues of relevance to HDR/HWR engineered geothermal system: Review of developments during the past 15 years, Geothermics, 28, 455-474. https://doi.org/10.1016/S0375-6505(99)00023-1
  2. Gibowicz, S. J., and Kijko, A., 1994, An introduction to mining seismology, Academic Press.
  3. Kim, J. Y., Kim, Y. S., Kwon, S. I., Kwon, H. I., Kim, J. H., Kang, S. W., Jang. H. S., Kim, T. H., and Kwon, H. H., 2012, Development of microseismic monitoring and analysis system for prediction of ground subsidence, Journal of Geosystem Engineering, 49, 6, 822-834.
  4. Kim, K. S., Bae, D. S., Koh, Y. K., and Kim, J. Y., 2009, Microsesmic monitoring for KAERI underground research tunnel, Journal of Engineering Geology, 19, 2, 139-144.
  5. Kim, M. S., Byun, J. M., and Seol, S. J., 2010, Study on micorseismic monitoring method for Enhanced Oil Recovery (EOR), Journal of Geosystem Engineering, 47, 6, 871-879.
  6. Lee, K. H., Lee, K. S., Shin, C. H., and Kim, Y. W., 2014, Microseismic monitoring in shale gas development: A report, Journal of Mineral and Energy Resources, 51, 2, 285-297.
  7. Maxwell, S. C., Underhill, B., Bennett, L., and Catoi, A., 2013, What constitutes a good microseismic acquisition system?: Borehole Workshop, EAGE.
  8. Maxwell, S. C., 2014, Microseismic Imaging of Hydraulic Fracturing : Improved Engineering of Unconventional Shale Reservoirs, 2014 Distinguished Instructor Series, N0. 17.
  9. Sheen, D. H., Cho, C. S., and Lee, H. I., 2013, Microseismic monitoring using seismic mini-array, Journal of Geophysics and Geophysical Exploration, 16, 1, 53-58. https://doi.org/10.7582/GGE.2013.16.1.53