• Title/Summary/Keyword: 해양특성

Search Result 5,393, Processing Time 0.037 seconds

A rock physics simulator and its application for $CO_2$ sequestration process ($CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용)

  • Li, Ruiping;Dodds, Kevin;Siggins, A.F.;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.

The Effect of Concentration of Glucose and Salts on both the Growth and the production of Lipid and DHA of Thraustochytrium aureum ATCC 34304 (당농도 및 염농도가 해양미생물 Thraustochytrium aureum ATCC 34304의 성장 및 지질과 DHA 생성에 미치는 영향 규명)

  • Kim Won-Ho;Jeong Young-Su;Park Chun-Ik;Hur Byung-Ki
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.271-277
    • /
    • 2005
  • The polyunsaturated fatty acids (PUFAs) are mostly synthesized by the marine original microorganisms. In this study, the effect of concentrations of glucose, NaCl, and $MgSO_4{\cdot}7H_2O$ on both the growth and the production of lipid and Docosahexaenoic acid (DHA) was investigated using Thraustochytrium aureum ATCC 34304. $Y_{Lipid/X}\;and\;Y_{DHA/Lipid}$ increased according to the increase of initial glucose concentration until 15 g/L of glucose. The maximum values of $Y_{Lipid/X}\;and\;Y_{DHA/Lipid}$ were 0.18 g/g and 0.41 g/g respectively at 15 g/L of glucose. The biomass yield, $Y_{x/s}$, however, was constant as 0.378 g/g regardless of initial glucose concentrations in the range of 5 g/L to 25 g/L. The specific growth rate of T. aureum increased also with initial glucose concentration from 5 g/L and 15 g/L. The maximum value was $0.79\;day^{-1}$ at 15 g/L of glucose, and the growth rate decreased to $0.57\;day^{-1}$ and remained constant according to initial sugar concentration in the range of higher than 15 g/L of glucose. The concentration of NaCl was changed from 0 g/L to 48 g/L, in order to study the characteristics of the growth and the production of lipid and DHA according to NaCl concentration. The growth and the production of lipid as well as DHA stopped all at 0 g/L of NaCl and the maximum values of all the three variables occurred at 24 g/L. The effect of $MgSO_4{\cdot}7H_2O$ concentration was also investigated not to find the growth and the production of lipid and DHA at 0 g/L. However, the growth and the Production with $MgSO_4{\cdot}7H_2O$ concentration increased to reach the maximum values at 18 g/L of $MgSO_4{\cdot}7H_2O$.

Settling Characteristics of Natural Loess Particles in Seawater (해수 중에서 자연상태 황토입자의 침강특성)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.706-712
    • /
    • 1999
  • PSD (particle size distribution) for 2,000 mg/$\ell$ natural loess in seawater showed normal distribution cure at 0 minute settling time, accompanying with very large particle distribution range with its mean particle diameter of 31.6 $\mu$m and coencient of variance of $72.6\%$, With elapsed time it showed that the PSD was rapidly changed from normal distribution cure to abnormal distribution curve, steepened the right-hand side of it and its coefficient of variance was getting increased because of rapid settling of large size particles, Cumulative weight distribution showed that 2,000 mg/$\ell$ natural loess in seawater was almost $100\%$ constituted of particles bigger than 20 $\mu$m in diameter. Ratio of $V_s/(D_{bm})^{1/2}$ for loess particles in seawater was increased with increase of particle size in geometrical progression. Almost all loess particles in seawater had Stokes settling velocity not less than 2,255 times of Brownian diffusion coefficient, There was almost to EDL (about 0.4 nm) around natural loess particles in seawater, Thus, there was always LVDW attractive force between loess particles approaching each other in seawater, and almost no EDL repulsive force. Loess particles were not always in the condition of easy floe formation. Concentration of natural loess in seawater increasing from 400 mg/$\ell$ to 10,000 mg/$\ell$, characteristics of the settling was changed from Type I settling (discrete settling) to Type II settling (flocculation settling). PVD (particle volume distribution) showed that natural loess particles in seawater were largely constituted of two types of particles, such as rapidly settling particles and suspended and dispersed particles for a long time. Amount of the latter was much less than that of the former.

  • PDF

Studies on the Environmental Characteristics of the Breeding Ground in the Kogum-sudo, Southern Part of Korean Peninsula I. Seasonal Succession of Phytoplankton Population (거금수도내 양식어장의 해양환경특성 I. 식물플랑크톤 군집의 계절변동)

  • Yoon Yang Ho;Koh Nam Pyo
    • Journal of Aquaculture
    • /
    • v.8 no.1
    • /
    • pp.47-58
    • /
    • 1995
  • Field studies on the seasonal succesion of phytoplankton population were carried out at the 25 stations of the breeding ground in Kogum-sudo, Southern coast of Korean peninsula in Feburuary, April, August and October, 1993. Sixty four species belonging to 40 genera were identified. Predominant species were mainly centric diatoms throughout the four seasons, two centric diatoms, Skeletonema costatum and Thalassiosira sp. and a pennate diatom, Thaiassionema nitzschioides in the winter; two pennate diatoms, Thaiassionema nitzschioides and Asterionella kariana, and especially a dinoflagellate, Heterocapsa triquetra (station 10) in the spring, two centric diatoms, S. costatum and Chaetoceros diadema in the summer; and a centric diatom, Rhizosolenia alata and a pennate diatom, Bacillaria paxillifer in the fall. The main red tide organisms in the breeding ground were dinoflagellates, Prorocentrum dentatum, P. minimum, P. triestinum, Ceratium furro, Gymnodinium sanguineum, Noctiluca scintillans, H. triquetra, Scrippsiella trichoidea and a diatom S. costatum in the Kogum Sudo. Seasonal phytoplankton cell numbers were in a wide range between $8.8\times10^3$ cells/l and 1.4\times10^6$ cells/l; The seasonal average cell numbers were $12.2\times10^4\pm5.9\times10^4$ cells/l $(mean\;\pm\;standard\; diviation)$ in the winter, $3.3\times10^4\pm1.4\times10^4$ cells/l in the spring, $48.4X10^4\pm40.0\pm10^4$ cells/l in the summer, and $3.6\times10^4\pm1.9\times10^4$ cells/l in the fall, respectively.

  • PDF

Mineralogical and Chemical Characteristics of the Oyster Shells from Korea (국내산 굴 패각의 광물학적 화학적 특성)

  • Ha, Su Hyeon;Cha, Min Kyung;Kim, Kangjoo;Kim, Seok-Hwi;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.149-159
    • /
    • 2017
  • We investigated the mineralogical and chemical characteristics of oyster shell as the possible substitute for the limestone used as an absorbent of $SO_2$ gas. The oyster shells from Taean and Tongyeong were used for the comparison with limestone and those from Boyreong and Yeosu were additionally investigated. XRD results show that all shells are composed of calcite with the exception of the myostracum layer attached to adductor muscle and ligament, which is composed of aragonite. The marine sediments as impurities exist on the surface of shells or as inclusions in the shells. Calcite is the main mineral composition of the shell of barnacle which is also one of the impurities. The oyster shell is composed of three main layers; prismatic, foliated, and chalk. The oyster shell from Tongyeong with the largest shell size, has the smallest thickness of prismatic and foliated layers which contain protein called conchiolin, whereas that from Taean with the smallest shell size has the largest prismatic and foliated layers. The sizes of those two layers of the shells from Boryeong and Yeosu are larger than that from Tongyeong but smaller than Taean. Those differences are supposed to be due to the different growth environments because the oysters from Tongyeong are cultured under the sea while those from Taean are in the tidal zone. The oyster shells generally show higher amount of sulfur and phosphorus than limestone, mainly due to the composition of protein. Some elements such as Mg show significant variations in different layers. As for trace elements, Li shows much higher amount in oyster shells than limestone, suggesting the influence of the composition of the sea water on the formation of the oyster shells.

Distribution characteristics and community structure of picophytoplankton in the northern East China Sea in 2016-2017 (2016~2017년 동중국해 북부해역의 초미소식물플랑크톤 분포 특성)

  • Park, Kyung Woo;Yoo, Man Ho;Oh, Hyun Ju;Youn, Seok Hyun;Kwon, Kee Young;Moon, Chang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.93-108
    • /
    • 2019
  • To investigate the temporal-spatial distribution of picophytoplankton in relation to different water masses in the northern East China Sea (ECS), picophytoplankton abundance were investigated using flow cytometry with environmental factors in 2016-2017. The results from the analysis of flow cytometer data showed that Synechococcus appeared across all seasons, exhibiting its minimum abundance in winter and maximum abundance in summer. Furthermore, high abundance was detected in the surface mixed layer during spring and summer when vertical stratification occurs; in particular, Synechococcus exhibited maximum abundance in thermocline layer, indicating a close correlation to water temperature and thermocline formation. In addition, the abundance of Synechococcus indicated a decrease in the western seas in 2017 compared to 2016 under the strong influence of the Changjiang Diluted Water (CDW). This was determined by the significant influence of the CDW on the abundance of Synechococcus during summer in the northern waters of the ECS. In contrast, Prochlorococcus did not appear during winter and spring, and its distribution was limited during summer and autumn in the eastern seas under the influence of the Kuroshio current. The largest range of Prochlorococcus distribution was confirmed during autumn without the influence of the CDW. Thus, the distribution pattern of each picophytoplankton genus was found to be changing in accordance to the extension and reduction of sea current in different seasons and periods of time. This is anticipated to be a useful biological marker in understanding the distribution of sea currents and their influence in the northern waters of the ECS.

The Effects of Marine Sediments and NaCl as Impurities on the Calcination of Oyster Shells (굴패각 소성시 해저 퇴적물과 NaCl 불순물이 소성 특성에 미치는 영향)

  • Ha, Su Hyeon;Kim, Kangjoo;Kim, Seok-Hwi;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.52 no.3
    • /
    • pp.223-230
    • /
    • 2019
  • The calcination of oyster shells have been studied as the possible substitute for the limestone used as an absorbent of $SO_2$ gas. However, since pure shells can not be used in calcination process, some impurities are contained and the changes in the characteristics of the calcination products are expected. In this study, the surface characteristics of the calcination products are investigated by mineralogical analysis according to the contents of NaCl, which can be derived from sea water, and sediments on the surface of the shell as impurities. The marine sediments on the shells were mainly composed of quartz, albite, calcite, small amounts of amphibole and clay minerals such as ilite, chlorite and smectite. After calcination of oyster shells mixed with 0.2-4.0 wt% sediments at $900^{\circ}C$ for 2 hours, regardless of the dehydration, dehydroxylation, and phase change of these minerals at the lower temperature than this experiment, no noticeable changes were observed on the specific surface area of the calcined product. However, when mixed with 0.1 to 2.0 wt% NaCl, the specific surface area generally increases as compared with the shell sample before calcination. The specific surface area increases with increasing amount of salt, and then decreases again. This is closely related to the changes of surface morphology. As the amount of NaCl increases, the morphology of the surface is similar to that of gel. It changes into a slightly angular, smaller particle and again looks like gel with increasing amount of NaCl. Our results show that NaCl affects morphological changes probably caused by melting of some oyster shells, but may have different effects on the specific surface area of calcination product depending on the NaCl contents.

Characterization of Agarase from a Marine Bacterium Agarivorans sp. BK-1 (해양세균 Agarivorans sp. BK-1의 분리 및 β-아가라제의 특성 규명)

  • Ahn, Byeong-Ki;Min, Kyung-Cheol;Lee, Dong-Geun;Kim, Andre;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1173-1178
    • /
    • 2019
  • The purpose of this study was to isolate an agar-degrading marine bacterium and characterize its agarase. Bacterium BK-1, from Gwanganri Beach at Busan, Korea, was isolated on Marine 2216 agar medium and identified as Agarivorans sp. BK-1 by 16S rRNA gene sequencing. The extracellular agarase, characterized after dialysis of culture broth, showed maximum activity at pH 6.0 and $50^{\circ}C$ in 20 mM Tris-HCl buffer. Relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 67, 93, 97, 100, 58, and 52%, respectively. Relative activities at pH 5, 6, 7, and 8 were 59, 100, 95, and 91%, respectively. More than 90% of the activity remained after a 2 hr exposure to 20, 30, or $40^{\circ}C$; about 60% of the activity remained after a 2 hr exposure to $50^{\circ}C$. Almost all activity was lost after exposure to 60 or $70^{\circ}C$ for 30 min. Zymography revealed three agarases with molecular weights of 110, 90, and 55 kDa. Agarose was degraded to neoagarobiose (46.8%), neoagarotetraose (39.7%), and neoagarohexaose (13.5%), confirming the agarase of Agarivorans sp. BK-1 as a ${\beta}$-agarase. The neoagarooligosaccharides generated by this agarase could be used for moisturizing, bacterial growth inhibition, skin whitening, food treatments, cosmetics, and delaying starch degradation.

Provenance of the Sediments of the Araon Mound in the Chukchi Sea, Arctic Ocean (북극 척치해 아라온 마운드 퇴적물의 기원지에 관한 연구)

  • Jang, JeongKyu;Koo, HyoJin;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.15-29
    • /
    • 2021
  • In the Arctic Ocean, the distribution of sea ice and ice sheets changes as climate changes. Because the distribution of ice cover influences the mineral composition of marine sediments, studying marine sediments transported by sea ice or iceberg is very important to understand the global climate change. This study analyzes marine sediment samples collected from the Arctic Ocean and infers the provenance of the sediments to reconstruct the paleoenvironment changes of the western Arctic. The analyzed samples include four gravity cores collected from the Araon mound in the Chukchi Plateau and one gravity core collected from the slope between the Araon mounds. The core sediments were brown, gray, and greenish gray, each of which corresponds to the characteristic color of sediments deposited during the interglacial/glacial cycle in the western Arctic Ocean. We divide the core sediments into three units based on the analysis of bulk mineral composition, clay mineral composition, and Ice Rafted Debris (IRD) as well as comparison with previous study results. Unit 3 sediments, deposited during the last glacial maximum, were transported by sea ice and currents after the sediments of the Kolyma and Indigirka Rivers were deposited on the continental shelf of the East Siberian Sea. Unit 2 sediments, deposited during the deglacial period, were from the Kolyma and Indigirka Rivers flowing into the East Siberian Sea as well as from the Mackenzie River and the Canadian Archipelago flowing into the Beaufort Sea. Unit 2 sediments also contained an extensive amount of IRD, which originated from the melted Laurentide Ice Sheet. During the interglacial stage, fine-grained sediments of Unit 1 were transported by sea ice and currents from Northern Canada and the East Siberian Sea, but coarse-grained sediments were derived by sea ice from the Canadian Archipelago.

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.