• Title/Summary/Keyword: 해양모델

Search Result 2,251, Processing Time 0.069 seconds

Study on Detection Technique for Coastal Debris by using Unmanned Aerial Vehicle Remote Sensing and Object Detection Algorithm based on Deep Learning (무인항공기 영상 및 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착 폐기물 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Na-Kyeong;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Kim, Bo-Ram;Park, Mi-So;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1209-1216
    • /
    • 2020
  • In this study, we propose a method for detecting coastal surface wastes using an UAV(Unmanned Aerial Vehicle) remote sensing method and an object detection algorithm based on deep learning. An object detection algorithm based on deep neural networks was proposed to detect coastal debris in aerial images. A deep neural network model was trained with image datasets of three classes: PET, Styrofoam, and plastics. And the detection accuracy of each class was compared with Darknet-53. Through this, it was possible to monitor the wastes landing on the shore by type through unmanned aerial vehicles. In the future, if the method proposed in this study is applied, a complete enumeration of the whole beach will be possible. It is believed that it can contribute to increase the efficiency of the marine environment monitoring field.

Numerical Analysis of Flow around Bow Rudder (선수 타 주위 유동의 수치적 해석)

  • Koo, Bon-Guk;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.170-176
    • /
    • 2020
  • In this study, the lift, drag and moments of the rudder that influences on the maneuvering ships directly has been investigated using CFD(Computational Fluid Dynamics). One of typical ship rudders effecting on the forces and moments is the bow rudders during maneuvering on the sea. Thus, the forces and moments should be investigated for the bow of ship rudder. Among the IFS bow rudder series, the balance IFS 54 BR 15 is used for study. As a turbulent model, standard k-epsilon is applied to this study. The hydrodynamic of the bow rudder, especially lift, drag and moment coefficients are calculated for the different angles of attack. The angles of attack between water flow and rudder are presented in cases including 0°, 5°, 10°, 15°, 20°, 25°, 30° and 35°. The results of calculation for those influences on maneuvering performance of ships are compared with the relevant results of the previous experimental studies.

Implementation of Automatic Identification Monitoring System for Fishing Gears based on Wireless Communication Network and Establishment of Test Environment (무선통신망 기반 어구자동식별 모니터링 시스템 구현 및 시험환경 구축)

  • Joung, JooMyeong;Park, HyeJung;Kim, MinSeok;Kwak, Myoung-Shin;Seon, Hwi-Joon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.193-200
    • /
    • 2021
  • In order to prevent illegal fishing and reduce lost fishing gear, it is necessary to develop a constant and continuous fishing gear monitoring system in the marine environment. In this paper, we design a long-term operational, reliable system model with communication coverage of more than 25Km considering the reality of gradually expanding fishing activity due to the depletion of fishery resources and marine environments. The design results are implemented to verify the operability of the system by separating the communication success rate of SKT and private LoRa networks and verifying the control function of each control system through the collected location information, respectively.

Comparative Analysis on Surplus Production Models for Stock Assessment of Red Snow Crab Chinonoecetes japonicus (붉은대게(Chinonoecetes japonicus) 자원평가를 위한 잉여생산량모델의 비교 분석)

  • Choi, Ji-Hoon;Kim, Do-Hoon;Oh, Taeg-Yun;Seo, Young Il;Kang, Hee Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.925-933
    • /
    • 2020
  • This study is aimed to compare stock assessment models which are effective in assessing red snow crab Chinonoecetes japonicus resources and to select and apply an effective stock assessment model in the future. In order to select an effective stock assessment model, a process-error model, observation-error model, and a Bayesian state-space model were estimated. Analytical results show that the least error is observed between the estimated CPUE (catch per unit effort) and the observed CPUE when using the Bayesian state-space model. For the Bayesian state-space model, the 95% credible interval(CI) ranges for the maximum sustainable yield (MSY), carrying capacity (K), catchability coefficient (q), and intrinsic growth (r) are estimated to be 10,420-47,200 tons, 185,200-444,800 tons, 3.81E-06-9.02E-06, and 0.14-0.66, respectively. The results show that the Bayesian state-space model was most reliable among models.

Evaluation of the Protection Performance of SB4 Class Concrete Barrier with Anti-Glare Function (SB4 등급 방현기능 콘크리트 방호울타리의 방호성능 평가)

  • Joo, Bongchul;Hong, Kinam;Yun, Junghyun;Lee, Jaeha;Kim, Jungho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • This paper describes the process of developing a concrete median barrier of SB4 grade with anti-glare function. The development section has a height and width of 1,270mm and 560mm, respectively. A wire mesh is placed in the center of the cross section to improve the protection performance. Collision analysis predicted that this section satisfies the strength and occupant protection performance, and that no damage to the barrier occurs. In the actual collision test, it was confirmed that this section satisfies the strength and occupant protection performance. However, damage was observed on two concrete barrier when the truck crashed. In order to improve the accuracy of the collision analysis of the concrete barrier in the future, it is considered that a study on the model development and continuous collision analysis method for domestic commercial vehicles should be carried out.

Study on a Three-Dimensional Ecosystem Modeling Framework Based on Marine Food Web in the Korean Peninsula (한반도 연근해를 대상으로 해양 먹이망 기반 3차원 생태모델 구축 연구)

  • Cho, Chang-Woo;Song, Yong-Sik;Kim, Changsin;Youn, Seok-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.2
    • /
    • pp.194-207
    • /
    • 2021
  • It is necessary to assess and manage the different elements of the marine ecosystem, such as climate change, habitat, primary and secondary production, energy flow, food web, potential yield, and fishing, to maintain the health of the ecosystem as well as support sustainable development of fishery. We set up an ecosystem model around the Korean peninsula to produce scientific predictions necessary for the assessment and management of marine ecosystems and presented the usability of the model with scenario experiments. We used the Atlantis ecosystem model based on the marine food web; Atlantis is a three-dimensional end-to-end model that includes the information and processes within an entire system, from an abiotic environment to human activity. We input the ecological and biological parameters, such as growth, mortality, spawning, recruitment, and migration, to the Atlantis model via functional groups using existing research and local measurements. During the simulation period (2018-2019), we confirmed that the model reproduced the observed data reasonably and reflected the actual ecosystem characteristics appropriately. We thus identified the usability of a marine ecosystem model with experiments on different environmental change scenarios.

Induced Charge Distribution Using Accelerated Uzawa Method (가속 Uzawa 방법을 이용한 유도전하계산법)

  • Kim, Jae-Hyun;Jo, Gwanghyun;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.191-197
    • /
    • 2021
  • To calculate the induced charge of atoms in molecular dynamics, linear equations for the induced charges need to be solved. As induced charges are determined at each time step, the process involves considerable computational costs. Hence, an efficient method for calculating the induced charge distribution is required when analyzing large systems. This paper introduces the Uzawa method for solving saddle point problems, which occur in linear systems, for the solution of the Lagrange equation with constraints. We apply the accelerated Uzawa algorithm, which reduces computational costs noticeably using the Schur complement and preconditioned conjugate gradient methods, in order to overcome the drawback of the Uzawa parameter, which affects the convergence speed, and increase the efficiency of the matrix operation. Numerical models of molecular dynamics in which two gold nanoparticles are placed under external electric fields reveal that the proposed method provides improved results in terms of both convergence and efficiency. The computational cost was reduced by approximately 1/10 compared to that for the Gaussian elimination method, and fast convergence of the conjugate gradient, as compared to the basic Uzawa method, was verified.

Effect of Turning Characteristics of Maritime Autonomous Surface Ships on Collision Avoidance (자율운항선박의 선회특성이 충돌회피에 미치는 영향)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.298-305
    • /
    • 2021
  • Identifying the effect of turning characteristics on collision avoidance for Maritime Autonomous Surface Ships (MASS) can provide a key to avoid the collision of MASS. The purpose of this study was to derive a method to identify the effect of turning characteristics, which can be changed by various rudder angles and the ship's speed, on collision avoidance. The turning circle was observed using a mathematical model of a 161-meter-long ship, and it was analyzed that the turning circle had an effect on collision avoidance through numerical simulations of collision avoidance for four collision situations of two ships. The evaluation results using the two variables, the minimum relative distance between two ships and the minimum time at the minimum relative distance, demonstrated that the rudder angle has a major influence on the change of the minimum relative distance, and the ship's speed has a major influence on the change of the minimum time. The evaluation method proposed in this study was expected to be applicable to collision avoidance as a measures in remote control of MASS.

Stochastic Volatility Models Using Bayesian Estimation for the Leverage Effect of Dry-bulk Freight Rate (건화물선 운임의 레버리지 효과 대한 확률 변동성 모형을 활용한 베이지안 추정)

  • Kim, Hyun-Sok
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.13-23
    • /
    • 2022
  • In this study, from January 2015 to April 2020, we propose a stochastic volatility model to capture the leverage effect on daily freight yields in the dry cargo market and analyze the freight yields. Estimation involving the Bayesian Markov Chain Monte Carlo method for the leverage effect based on the negative correlation that exists between returns and volatility in stochastic volatility analysis yields similar estimates, and the statistcs indicates significant. That is, the results of the empirical analysis show that the degree of correlation between returns and volatility, and the magnitude and sign of fluctuations differ, which suggests that taking into account the leverage effect in the SV model improves the goodness of fit of the estimates. In addition to the statistical significance of the estimated model's leverage effect, the analysis by log predictive power score presents the estimated results with improved predictive power of the model considering the leveraged effect. These astatistically significant empirical results show that the stochastic volatility model considering the leverage effect is important for freight rate risk modeling in the marine industry.

Future changes in runoff characteristics of an estuarine reservoir watershed using CMIP6 multi-GCMs (CMIP6 다중 GCMs을 적용한 담수호 유역의 미래 유출특성 변화)

  • Sinae Kim;Seokhyeon Kim;Hyunji Lee;Jihye Kwak;Jihye Kim;Moon-Seong Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.419-419
    • /
    • 2023
  • 하천의 최종 유출부와 해양이 만나는 지점을 하구라고 하며, 우리나라는 주로 서해안 지역에 하구 방조제 건설에 따른 담수호가 조성되어 다양한 목적으로 수자원이 활용되고 있다. 이러한 하구 담수호는 바다로 유입되기 직전의 물을 저류시켜 수자원 확보에 긍정적이나, 일반적으로 유역의 최하류에 위치해 있어 오염물질 유입, 부영양화, 염분 침출로 인한 오염물질 용출 등에 취약하다. 따라서 담수호의 회복탄력성 향상과 지속가능한 수자원 관리를 위해서는 미래 기후변화에 따른 영향 분석이 필수적이다. 특히 기후변화는 거대규모의 홍수과 같은 자연재난, 농업가뭄 및 식생가뭄 등의 증가로 이어질 수 있으므로, 이에 효과적으로 대비하기 위해서는 미래 기후조건에 따른 하천의 미래 유출량 변화 예측이 수행되어야 한다. 본 연구에서는 불확실한 미래 수문변화를 예측하기 위해 CMIP6(Coupled Model Intercomparison Project Phase 6) GCMs(Global Climate Models)의 SSP(Shared Socioeconomic Pathways) 시나리오를 유역 유출모델에 적용하여 기후변화에 따른 미래 유출특성의 변화를 예측하였다. 충청남도 서산시에 위치한 간월호 유역을 대상유역으로 선정하고, HSPF(Hydrological Simulation Program-FORTRAN) 모형을 적용하여 상류유역의 과거 및 미래 장기유출량 모의를 수행하였다. 모의된 시나리오별 유출량을 기반으로 최빈유량곡선법을 적용하여 미래의 기준유량 발생시점 및 지속기간의 변화를 분석하였으며, CVDs(Center-of-volume dates)의 변화를 통해 기후변화에 따른 홍수기의 시기적 변화 양상을 파악하고자 하였다. 본 연구의 결과는 미래 유역 환경변화를 고려한 담수호의 수자원 보전관리계획 수립에 있어 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF