• Title/Summary/Keyword: 해양구조물안전

Search Result 210, Processing Time 0.023 seconds

A Study on the Development of HNS Database for Response System of Marine Spill Accident in Korea (해양 화학물질 유출사고 대응을 위한 한국형 위험유해물질의 데이터베이스 개발에 대한 연구)

  • Park, Mi Ok;Park, Hyeon-Sil;Kim, Taehong;Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.52-58
    • /
    • 2016
  • In this study we collected various substance codes, physical and chemical properties, and hazard level of the 545 HNS which was determined earlier, and constructed the Korean HNS database including International Maritime Dangerous Goods (IMDG) codes,, informations of explosive and corrosive characteristics of HNS after reviewing of US, Japan and European Database. And also problems of present HNS Database which focused mainly on land-based environment and an absence of information for chemical and physical properties of mixed substance HNS are reported. For the efficient implementation of comprehensive HNS management system, we constructed the basic model for the HNS database in marine environment and made suggestions for improvement for the future development of HNS Database to be prepared for the marine spill accidents.

Analysis of Extreme Wave Conditions for Long-Term Wave Observation Data Considering Directionality (방향성을 고려한 장기 파랑관측자료의 극치파랑조건 분석)

  • Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.700-711
    • /
    • 2022
  • In this study, deepwater design waves were estimated for 16 wave directions and various return periods based on statistical analysis of extreme waves observed for more than 20 years at three stations (Chilbal-do, Geomun-do, Donghae). These values were compared with design waves estimated based on the omni-directional wave data. The Weibull distribution was used as the probability distribution function whose parameters were determined by the least square method. The Kolmogorov-Smirnov test was applied for the goodness of fit test. Notably, the directional design waves were smaller than the omni-directional design wave for every wave direction. The maximum 50-year wave heights for directional sectors were 7.46 m (NNE), 12.05 m (S), and 9,59 m (SSW) at Chilbal-do, Geomun-do and Donghae whereas those for uni-directional wave data were 7.91 m, 13.82 m and 10.38 m, respectively. This implied possible under-estimation of the deepwater design waves for 16 wave directions being currently used in the design of offshore and coastal structures.

A Study on Site Selection for Marine Recreational Floating Architecture (해양레저용 플로팅 건축물 입지선정에 관한 연구)

  • Lee, Han-Seok;Cho, Hyung-Jang;Kang, Young-Hun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • The systematic criteria and rational standard for site selection of marine recreational floating architecture are in urgently need in respect of structural safety, use of facilities, economics of construction and management, relationship with surrounding areas or cities and impact on marine environment. Nevertheless, at present, there is not any study nor guideline for site selection of marine recreational floating architecture which is now being planned and elected at many places of a body of water such as river or coastal area all over the country. Therefore this study is to propose a systematic process and a rational criteria and guideline for site selection of marine recreational floating architecture. Especially the results are suggested in forms of diagrams and tables in order to be utilized so easily by related local governments and individual enterprises.

Safety Evaluation of the Combined Load for Offshore Wind Turbine Suction Foundation Installed on Sandy Soil (사질토 지반에 위치한 해상풍력발전기 석션기초의 복합하중에 대한 안전성 평가)

  • Park, Jeong Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.195-202
    • /
    • 2021
  • Offshore wind turbine (OWT) receive a combined vertical-horizontal- moment load by wind, waves, and the structure's own weight. In this study, the bearing capacity for the combined load of the suction foundation of OWT installed on the sandy soil was calculated by finite element analysis. In addition, the stress state of the soil around the suction foundation was analyzed in detail under the condition that a combined load was applied. Based on the results of the analyses, new equations are proposed to calculate the horizontal and moment bearing capacities as well as to define the capacity envelopes under general combined loads.

Numerical Analysis of Gravity Current Flow past Subsea Pipe above a Scour (세굴된 해저 파이프 주위 중력류의 유동 해석)

  • Jung, Jae Hwan;Yoon, Hyun Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.892-899
    • /
    • 2016
  • Gravity current flow past a subsea pipe above a scour based on computational fluid dynamics. For comparison, gravity current flow over pipe above a smooth bed also calculated, this configuration conventionally employed to consider the scour effect from an ideal approach. Interestingly, there different flow features and hydrodynamic forces between the scour and smooth bed cases. These results indicate that realistic conditionvery important investigatthe scour effect on gravity current flow around subsea pipe.

The Conceptual Design of Auto Releasing Emergency Wreck Marking Buoys (자동이탈식 비상침선표지 개발을 위한 개념설계 연구)

  • Gug, Seung-Gi;Park, Hye-Ri
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.417-422
    • /
    • 2016
  • Aids to Navigation (AtoN) are marine traffic facilities to improve the safety and efficiency of shipping. "New Dangers" should be appropriately marked using lateral, cardinal or isolated danger marks or by using an Emergency Wreck Marking Buoy. However, Emergency Wreck Marking Buoys are difficult to implement in terms of speed and accuracy of installation. In the case of sinking accidents, it is often difficult to immediately install an Emergency Wreck Marking Buoy because of weather conditions, the marine environment or accident positioning. This study concerns Auto-Releasing Emergency Wreck Marking Buoys, which should be installed in all vessel for safe marine navigation and efficient maritime transport with reference to the Maritime Buoyage System (MBS). Auto-Releasing Emergency Wreck Marking Buoys include an auto-release unit, auto reel chain and auto lighting lantern. These buoys can be automatically released from the deck of a vessel and will float in the water for quick installation at the scene of an accident, even in the case of sinking accidents. Auto-Releasing New Mark Buoys are expected to reduce to installation process, prevent secondary accidents by the risk of navigation and be search and rescue rapidly.

Application of Three-Dimensional Numerical Irregular wave Tank(3D-NIT) Model (3차원 불규칙 수치파동수조(3D-NIT) 모델의 적용성에 관한 연구)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.388-397
    • /
    • 2012
  • In this study, 3D-NIT(3-Dimensional Numerical Irregular wave Tank) model in which regular wave as well as stable irregular wave can be generated in 3-dimensional numerical irregular wave tank was proposed. To verify validity, the following steps need to be conducted: 1) comparative analysis between calculated waveforms and targeted waveforms at the wave generating point, 2) comparative analysis with the existing experimental values of overtopping volume estimated, targeting shore protection structures installed on a slope bed, 3) comparison with the existing numerical and hydraulic experimental results through application in the analysis on the wave deformation by structures and wave force acting on the vertical cylindrical structures. Based on the results, characteristics of the breaking wave forces according to incident waves and interval distance of structures were identified through application of 3D-NIT model in the analysis on the breaking wave forces acting on the cylindrical structures installed on a slope bed, and reflection and overtopping was reviewed through application in the special breakwaters on the domestic fields. The numerical results obtained the 3D-NIT model are in good agreement with experimental results, and its applicaion to the complex-shpaed coastal structures is verified.

A Study on Load-carrying Capacity Design Criteria of Jack-up Rigs under Environmental Loading Conditions (환경하중을 고려한 Jack-up rig의 내하력 설계 기준에 대한 연구)

  • Park, Joo Shin;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.103-113
    • /
    • 2020
  • Jack-up drilling rigs are widely used in the offshore oil and gas exploration industry. Although originally designed for use in shallow waters, trends in the energy industry have led to a growing demand for their use in deep sea and harsh environmental conditions. To extend the operating range of jack-up units, their design must be based on reliable analysis while eliminating excessive conservatism. In current industrial practice, jack-up drilling rigs are designed using the working(or allowable) stress design (WSD) method. Recently, classifications have been developed for specific regulations based on the load and resistance factor design (LRFD) method, which emphasises the reliability of the methods. This statistical method utilises the concept of limit state design and uses factored loads and resistance factors to account for uncertainly in the loads and computed strength of the leg components in a jack-up drilling rig. The key differences between the LRFD method and the WSD method must be identified to enable appropriate use of the LRFD method for designing jack-up rigs. Therefore, the aim of this study is to compare and quantitatively investigate the differences between actual jack-up lattice leg structures, which are designed by the WSD and LRFD methods, and subject to different environmental load-to-dead-load ratios, thereby delineating the load-to-capacity ratios of rigs designed using theses methods under these different enviromental conditions. The comparative results are significantly advantageous in the leg design of jack-up rigs, and determine that the jack-up rigs designed using the WSD and LRFD methods with UC values differ by approximately 31 % with respect to the API-RP code basis. It can be observed that the LRFD design method is more advantageous to structure optimization compared to the WSD method.

Ultimate Strength varying the Yield Stress of a Ship's Plate (선체판의 항복응력 변화에 따른 최종강도거동에 관한 연구)

  • Ko Jae-Yong;Lee Jun-Kyo;Park Joo-Shin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.179-183
    • /
    • 2005
  • The High-tensile steel has been recognized as a promising concept for structural design of light weight transportation systems such as aircraft high speed trains and fast ships. Using the high-tensile steel has been widely used in ship structures, and this enables to reduce the plate thickness. Using the high-tensile steel effectively for a ship hull, the plate thickness becomes thin so that plate buckling may take place. Therefore, precise assessment of the behavior of plate above primary buckling load is important. In this study, examined closely secondary buckling behavior after initial buckling of thin plate structure which operated compressive load according to the various kinds of yield stress with simply supported boundary condition. Analysis method is F.E.M by commercial program(ANSYS V7.1) and complicated nonlinear behaviour can analyze using art-length method about secondary buckling.

  • PDF

The Vessels Traffic Measurement and Real-time Track Assessment using Computer Vision (컴퓨터 비젼을 이용한 선박 교통량 측정 및 항적 평가)

  • Joo, Ki-Se;Jeong, Jung-Sik;Kim, Chol-Seong;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.131-136
    • /
    • 2011
  • The furrow calculation and traffic measurement of sailing ship using computer vision are useful methods to prevent maritime accident by predicting the possibility of an accident occurrence in advance. In this paper, sailing ships are recognized using image erosion, differential operator and minimax value, which can be verified directly because the calculated coordinates are displayed on electronic navigation chart. The developed algorithm based on area information of this paper has the advantage which is compared to the conventional radar system focused on point information.