• Title/Summary/Keyword: 해안선 침식

Search Result 120, Processing Time 0.025 seconds

Observation on the Shoreline Changes Using Digital Aerial Imagery for Bangamoeri Beaches (디지털항공영상을 활용한 방아머리 해빈의 해안선 변화 관측)

  • Yun, Kong-Hyun;Song, Yeong Sun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.971-980
    • /
    • 2017
  • In this research, it was presented that the strategic approach for the long-term shoreline changes using historic digital aerial images can be effective for the analysis on the bangameori beach, west coast of South Korea. For this purpose, we collected several historic digital aerial images over 9 years in the research filed and conducted GPS-VRS surveying for GCP (Ground Control Point) acquisition. Also we collected existing two dimensional shoreline digital map which was published by KHOA (Korea Hydrographic and Oceanographic Agency) in the year 2013. With these multi data sets, we provided quantitative analysis on coastal erosion using the long-term shoreline changes in the beach. Also, As the results it was found that 2m sea level was retreated in the research period with maximum 0.31m length.

Mapping 3D Shorelines Using KOMPSAT-2 Imagery and Airborne LiDAR Data (KOMPSAT-2 영상과 항공 LiDAR 자료를 이용한 3차원 해안선 매핑)

  • Choung, Yun Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • A shoreline mapping is essential for describing coastal areas, estimating coastal erosions and managing coastal properties. This study has planned to map the 3D shorelines with the airborne LiDAR(Light Detection and Ranging) data and the KOMPSAT-2 imagery, acquired in Uljin, Korea. Following to the study, the DSM(Digital Surface Model) is generated firstly with the given LiDAR data, while the NDWI(Normalized Difference Water Index) imagery is generated by the given KOMPSAT-2 imagery. The classification method is employed to generate water and land clusters from the NDWI imagery, as the 2D shorelines are selected from the boundaries between the two clusters. Lastly, the 3D shorelines are constructed by adding the elevation information obtained from the DSM into the generated 2D shorelines. As a result, the constructed 3D shorelines have had 0.90m horizontal accuracy and 0.10m vertical accuracy. This statistical results could be concluded in that the generated 3D shorelines shows the relatively high accuracy on classified water and land surfaces, but relatively low accuracies on unclassified water and land surfaces.

The Coastline Change on Gwangalli Using Spatial Information (공간정보를 이용한 광안리 해안선 변화에 관한 연구)

  • Choi, Chul-Uong;Oh, Che-Young;Lee, Chang-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • The Gwangalli Beach, one of beaches representative of Busan together with the Haeundae Beach, is a tourist attraction, having increased tourists since the completion of Gwangandaero Bridge in 2003 and recording more than 10 million tourists in 2006. Although the competent local government office has conducted artificial beach nourishment/gravel removal projects every year to manage it, systematic monitoring and studies of erosion are insufficient. This study analyzed the changes in the coastline of Gwangalli Beach using aerial photos, tidal data, GPS survey data for the last sixty years, and examined how the Gwangandaero Bridge, which had been constructed on the Gwanganlli sea, has affected the changes. The results show that the area of Gwangalli Beach has increased 40% for the last sixty years, and that the effects of Gwangandaero Bridge on the coastline are insignificant.

  • PDF

Investigation of Long-Term Shoreline Changes Using Aerial Images (항공사진을 이용한 장기해안선변화 조사)

  • 정승진;김규한;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2004
  • In this paper, the affine transformation method that is more simpler compare with digital orthophoto method is used analyzed the long-term shoreline change, and accuracy estimation was carried out. As a result of this study, it was able to check that the shoreline change on Namhangjin coast had eroded significantly compare with the past. Moreover, as a result of accuracy estimation, it shows that the RMS error around shoreline was about 1-2 m. In consideration that maximum allowable error shown in aerial photogrammetry specification is within 2 m, therefore, analysis results of shoreline change using affine transformation method on aerial images is reliable.

Quantitative Estimation of Shoreline Changes Using Multi-sensor Datasets: A Case Study for Bangamoeri Beaches (다중센서를 이용한 해안선의 정량적 변화 추정: 방아머리 해빈을 중심으로)

  • Yun, Kong-Hyun;Song, Yeong Sun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.693-703
    • /
    • 2019
  • Long-term coastal topographical data is critical for analyzing temporal and spatial changes in shorelines. Especially understanding the change trends is essential for future coastal management. For this research, in the data preparation, we obtained digital aerial images, terrestrial laser scanning data and UAV images in the year of 2009. 2018 and 2019 respectively. Also tidal observation data obtained by the Korea Hydrographic and Oceanographic Agency were used for Bangamoeri beach located in Ansan, Gyeonggi-do. In the process of it, we applied the photogrammetric technique to extract the coastline of 4.40 m from the stereo images of 2009 by stereoscopic viewing. In 2018, digital elevation model was generated by using the raw data obtained from the laser scanner and the corresponding shoreline was semi-automatically extracted. In 2019, a digital elevation model was generated from the drone images to extract the coastline. Finally the change rate of shorelines was calculated using Digital Shoreline Analysis System. Also qualitative analysis was presented.

Long Term Shoreline Change including Sand Discharge from River (하천유사량을 고려한 장기적인 해안선변동 특성)

  • Lee, Seong-Dae;Park, Jung-Chul;Hong, Chang-Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2161-2165
    • /
    • 2008
  • 최근 연안 해역에서의 표사문제는 사회적인 문제로 관심의 집중이 되고 있다. 특히 자연 환경 변화와 연안 구조물 건설과 같은 인위적 환경변화가 복합적으로 작용하여 연안에서의 침식이 가중되고 있으며 이에 따라 해안표사, 연안 생태환경 및 연안방재에 심각한 상태에 이르고 있다. 따라서 환경적인 측면뿐 아니라 이용자의 측면에서 장기적인 해빈보전 계획의 수립이 불가피한 실정이다. 장기적인 해빈보전계획을 수립하기 위해서는 연안해역 자체의 표사 변동 뿐만 아니라 연안으로 유입되는 표사의 공급원을 파악하는 것이 중요하다. 따라서 하천에서 연안해역으로 공급되는 유사량을 예측하고 유사가 어떻게 연안해역에 표사로 이송되어 가는가를 파악하는 것은 연안표사문제를 이해하는데 중요한 요소라 할 수 있다. 본 연구에서는 강릉 남대천하구역에서 유출되는 하천유사량을 혼합입경의 관점에서 검토하여 도류제 설치에 따른 하구역에서의 지형변동 및 하구폐색현상을 해석하였으며, 하천으로부터 공급되는 유사량을 고려하여 강릉 남대천과 인접한 남항진해수욕장 인근에서의 장기적인 해안선변동 특성을 고찰하였다.

  • PDF

The Study on Application and Management of the Coast Using Airborne LiDAR Surveying (LiDAR자료를 이용한 연안 해안지역 관리 및 활용에 관한 연구)

  • We, Gwang-Jae;Yom, Jae-Hong;Lee, Kang-Won;Kim, Seung-Young
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.66-73
    • /
    • 2002
  • 본 논문은 미국 Oregon 지역을 실험지역으로 하여 LiDAR자료를 이용하여 연안해역 관리 및 해안지역의 각종 분석자료의 기초데이터로 활용하는 방안을 도출하고자 한다. 실험지역은 미국 Oregon주의 남쪽해안에 위치하고 있는 해안지역이며, 해안선이 완만하게 형성이 되어 있다. 본 실험에 이용된 LiDAR 자료는 97년 10월과 98년 4월 2회에 걸쳐 NASA의 ATM(Airbone Topographic Mapper) II를 이용하여 측량을 실시하였다. 연도별로 취득된 해변지역의 표고값을 근거로 하여 연도별 해변의 단면 변화량을 산출하였다. 본 연구를 통하여 연구지역인 미국 Oregon 해변지형의 표고변화는 연도별로 약 0.79m/year 정도 변화가 발생하였다. 또한 국내에서 해안선 측량시 이용가능성 및 해안선 변화 모니터링, 해변 위험지역 및 침식량 산정 등 다양한 분야의 활용가능성을 제시하였다.

  • PDF

A Hydraulic Experiment Using Artificial Seaweed for Coastal Erosion Prevention (인공식생을 이용한 해빈침식방지에 관한 수리실험)

  • Kim, Beom Mo;Jeon, Yong Ho;Yoon, Han Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.266-273
    • /
    • 2016
  • Two-dimensional hydraulic experiments were performed to assess the impact of artificial seaweed on wave energy attenuation, and coastal erosion prevention. In this experimental study, erosion geometry and wave reflection coefficients were determined for normal and stormy incident waves, with and without artificial seaweed. The coastline of beaches without artificial vegetation was observed to retreat, and the longshore bar height increased in normal and stormy conditions. Through the introduction of artificial seaweed (of widths 0.8 m, and 1.6 m), the coastline was found to advance in the offshore direction due to material deposition. From these results, it is shown that artificial seaweed alters the cross-section of beaches, such that it is possible to prevent coastline erosion.

Numerical Analysis of the Grand Circulation Process of Mang-Bang Beach-Centered on the Shoreline Change from 2017. 4. 26 to 2018. 4. 20 (맹방해빈의 일 년에 걸친 대순환과정 수치해석 - 2017.4.26부터 2018.4.20까지의 해안선 변화를 중심으로)

  • Cho, Young Jin;Kim, In Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.101-114
    • /
    • 2019
  • In this study, we carry out the numerical simulation to trace the yearly shoreline change of Mang-Bang beach, which is suffering from erosion problem. We obtain the basic equation (One Line Model for shoreline) for the numerical simulation by assuming that the amount of shoreline retreat or advance is balanced by the net influx of longshore and cross-shore sediment into the unit discretized shoreline segment. In doing so, the energy flux model for the longshore sediment transport rate is also evoked. For the case of cross sediment transport, the modified Bailard's model (1981) by Cho and Kim (2019) is utilized. At each time step of the numerical simulation, we adjust a closure depth according to pertinent wave conditions based on the Hallermeier's analytical model (1978) having its roots on the Shield's parameter. Numerical results show that from 2017.4.26 to 2017.10.15 during which swells are prevailing, a shoreline advances due to the sustained supply of cross-shore sediment. It is also shown that a shoreline temporarily retreats due to the erosion by the yearly highest waves sequentially occurring from mid-October to the end of October, and is followed by gradual recovery of shoreline as high waves subdue and swells prevail. It is worth mentioning that great yearly circulation of shoreline completes when a shoreline retreats due to the erosion by the higher waves occurring from mid-March to the end of March. The great yearly circulation of shoreline mentioned above can also be found in the measured locations of shoreline on 2017.4.5, 2017.9.7, 2017.11.7, 2018.3.14. However, numerically simulated amount of shoreline retreat or advance is more significant than the physically measured one, and it should be noted that these discrepancies become more substantial for the case of RUN II where a closure depth is sustained to be as in the most morphology models like the Genesis (Hanson and Kraus, 1989).

Laboratory Observations of Nearshore Flow Patterns Behind a Single Shore-Parallel Submerged Breakwater (해안선에 평행한 단일 잠제 후면 연안 흐름패턴 관측 수리실험)

  • Choi, Junwoo;Roh, Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • In order to understand the efficacy of submerged breakwater constructed for the beach protection, laboratory experiments were carried out by observing the characteristics of flow around a single shore-parallel submerged breakwater. The velocity field near the shoreline was measured by utilizing the LSPIV (Large-Scale Particle Image Velocimetry) technique, and mean surface and wave height distributions were observed around the submerged breakwater, according to various combinations of incident waves and submerged breakwaters. In this experiment, it was found that the mean flow pattern behind the submerged breakwater was determined by the balance among the gradients of mean water surface and excess wave-momentum flux (i.e., radiation stress tensors) which interact with the wave-induced current developed by the gradients on the rear and the side of the submerged breakwater. The divergent and convergent flow patterns behind the submerged breakwater (i.e., accretion and erosion response) of the numerical study of Ranasinghe et al.(2010) were observed in the measured velocity distributions, and their empirical formula mostly agreed with the experimental results. However, for some cases in this experiment, it was difficult to say that the flow pattern was one of them and was agreed with the empirical formula.