• Title/Summary/Keyword: 해수 수온

Search Result 480, Processing Time 0.027 seconds

Water Temperature and Salinity Variation Analysis in the Inter-Tidal Zone, South of Ganghwado, Korea (강화도 남단 조간대에서의 수온 및 염분 변동양상 분석)

  • Cho, Hong-Yeon;Koo, Bon-Joo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.3
    • /
    • pp.310-320
    • /
    • 2008
  • Water temperature and salinity variation patterns were analysed using the CTD data measured in the Yeochari, Dongmakri and Donggeomdo intertidal zone, south of Ganghwado. Only the data during the submersion period of the measurement stations were used in this analysis. It is clearly shown that the correlation between air and water temperatures is very low and the water temperature variation shows clearly the opposite patterns as the tidal elevation increases and decreases. Whereas, the salinity change shows the similar pattern of the tidal elevation change pattern because the salinity change pattern could be described as the increasing function from the shoreline to offshore regions due to the continuous ground-water inflow in the adjacent watersheds. The salinity is increased from the submersion time to the high tide and decreased from the high tide to the exposure time.

Interannual Variability of Sea Water Temperatures in the Southern Waters of the Korean East Sea (한국 동남해역의 장주기 수온변동)

  • Ro, Young Jae
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 1989
  • This study analyzes the interannual periodicity by using the statistical techniques of probability, spectral analysis, empirical orthogonal function analysis (EOF), and coherency analysis. The data base for this study is the time series of 1971-1985 temperature, salinity in the southern waters of the East Sea, 1960-1986 mean sea level at Pusan and Izuhara, and 1960-1986 sea level atmospheric pressure at Pusan. The appearances of anomalous temperatures higher and lower than 15-year mean monthly average with one standard deviation are about 30% of total data. The significant interannual period for temperature, salinity and sea level fluctuation is 36.6, and 23.3 months. The empirical orthogonal function analyses show that the 1st mode of the EOFs is responsible for more than 90% of total variance of the surface temperature variations, while in near-bottom waters, the relative importance of the higher EOF modes is much greater explaining more than 30% of total variance. The coherency between normalized temperatures and salinities is significant at the interannual period of 36.6 and 21.3 months.

  • PDF

A result of prolonged monitoring underwater sound speed in the center of the Yellow Sea (황해 중앙부에서 수중음속의 장기간 모니터링 결과)

  • Kil, Bum-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • A time-series variation of temperature, salinity, and underwater sound speed was analyzed using an Array for Real-time Geostrophic Oceanography (ARGO) float which autonomously collects temperature and salinity for about 10month with 2 days cycle among 12 floats in the center of the Yellow Sea. As a result, the underwater sound channel appeared below the thermocline as the surface sound channel, which is dominant in the winter season, reduced in April. Besides, for a certain time in the spring season, the sound ray reflected the sea surface frequently due to the short-term temperature inversion effect. Based on the case of successful observation of ARGO float in the shallow water, using prolonged monitoring unmanned platform may contribute to predicting sound transmission loss if the temperature inversion and sound channel including background environment focusing are investigated in the center of the Yellow Sea.

Effect of Urea on the Exfoliation of Juvenile Abalone, Haliotis discus Reeve (농업용 요소비료를 이용한 까막전복, Haliotis discus Reeve 마취 및 박리효과)

  • 한석중;김봉래;원승환;김재우
    • Journal of Aquaculture
    • /
    • v.16 no.4
    • /
    • pp.223-228
    • /
    • 2003
  • An exfoliation, the detachment of juvenile abalones from a culture substrate, is essential for selection and population density control in abalone culture. Physical instruments and anesthetics are currently available for the exfoliation but the latter is regarded as more effective in reducing physical damage to the animals. In the present study, urea ($Co(NH_2)_2$), a chemical fertilizer, was selected as a anesthetic, and its optimal concentration and sea water temperature for exfoliation of Haliotis discus were determined in order to develop an exfoliation technique which is more economical and effective. A 97% cumulated exfoliation rate was observed within 3 min at all temperatures observed when the concentration rate of urea was 9∼15%. This range of urea concentration can be ideal for both exfoliation and recovery. Also it was found that the higher concentration of urea and temperature the higher exfoliation rate, however, these conditions reduced the recovery rates of the animals tested. These results could indicate that urea is a good tool for exfoliation of various species of young abalones, and urea could substitute for all techniques and anesthetics methods currently available for abalone exfoliation.

Effect of Water Temperature, Salt and $MgCl_2$, Concentration on Sand Ejection Characteristics of Short Neck Clam, Luditapes philippinarum (수온, 염분 및 염화마그네슘의 농도가 바지락의 토사특성에 미치는 영향)

  • HONG Sang-Pill;KIM Dong-Su;KIM Young-Myung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.114-118
    • /
    • 1997
  • Effect of water temperature, salt and $MgCl_2$ concentration on sand ejection characteristics of short neck clam, Luditapes philippinarum was investigated. Unlike other shell fish such as red shell, arkshell and surf clam, treatment of short neck clam with sea water was evaluated not effective as sand ejection conditions. Sand ejection activity of short neck clam was shown effective at $2.5\%$ NaCl (pH 8.0) at $25^{\circ}C$. This activity was enhanced about 1.57 times when 50 mM $MgCl_2$ were added to the above mentioned conditions. But the extent of sand ejection activity was shown higher in the order of sea water $(3.2\%\;salt)+20mM\;MgCl_2$, sea water $(3.2\%\;salt),\;2.5\%\;NaCl+50mM\;MgCl_2$, treatments. Therefore, it was suggested that habitat conditions and Mg ions could be responsible for biological activity and concominant sand ejection of short neck clam.

  • PDF

Growth and Optimal Environment Factors of Cockle Shell, Anadara granosa bisenensis, Spat in Laboratory Culture (실험실 사육에 의한 고막, Anadara granosa bisenensis 치패의 적정 환경요인 및 성장)

  • 강경호;박형욱;김재민
    • The Korean Journal of Malacology
    • /
    • v.16 no.1_2
    • /
    • pp.25-29
    • /
    • 2000
  • In order to investigate the optimal environment factor for growth of the cockle shell, Anadara granosa bisenensis, tolerance experiment to the water temperature and salinity have been conducted. In the tolerance experiment to the temperature A. granosa bisenensis survived a very wide range from 3$^{\circ}C$ to 33$^{\circ}C$, but their survival rate was lower at higher water temperature up to 35$^{\circ}C$. In the case of salinity their tolerance range was from 0$\textperthousand$ to 100$\textperthousand$ and showed higher survival rate at lower salinity. Growth in shell length and total weight of the spat at the end of the rearing experiment was 13.17${\pm}$0.98 mm and 0.69${\pm}$011 g.

  • PDF

An Experimental Study on the Properties of Compressive Strength of Fly Ash Replaced Antiwash out Underwater Concrete Considering Marine Environment (해양환경을 고려한 플라이애쉬${\cdot}$수중 불분리 콘크리트의 압축강도에 관한 실험적 연구)

  • Kwon, Joong-Hyen;Jung, Hee-Hyo;Moon, Je-Kil
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • When the concrete is cast at the sea, there are lots of restrictions in the working process being different from in land, and the concrete is suffered from the physical and chemical action in terms of marine environment. The compressive strength was measured after antiwash out underwater concrete mixed with fly ash had been cast and cured in order to produce the endurable high performance concrete, and then its characteristic was discussed by comparing one cured in air with in fresh water, and the effect of fly ash usage under the properly controled sea water temperature of $15{\pm}3^{\circ}C$ was also covered. The present work showed that the proper usage of fly ash was obtained at the condition of around 10% of substituted binder weight under the structure required the early age strength, and at the condition of over 40% if considering its durability and economy.

Dispersion of High Temperature and High Salinity Water Discharged from Offshore Desalination Plant (해상 담수화 공장에서 배출되는 고온고염 해수의 확산예측)

  • Lee Moonjin;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • Dispersion of high temperature and high salinity water discharged from a desalination plant is numerically estimated to investigate its impact on marine environment. The plant is installed on a floating barge located in Jinhae Bay and takes 200 tons of seawater per day. Fifty tons of intake are changed into fresh water, while 150 tons of those are discharged as the water of 15℃ warmer and 1.33 times saltier than surrounding seawater. In this dispersion model, advection is described by two-dimensional tidal currents and turbulent diffusion is simulated by Monte Carlo technique. Decay of water temperature is modelled by heat exchange between the atmosphere and the ocean, while decay of water salinity is ignored. The distributions of temperature and salinity come to equilibrium when the dispersion model is run for 100 days for temperature and for 365 days for salinity, respectively. At equilibrium state the water temperature and salinity rise 0.01℃ and 0.001‰ higher than ambient seawater, respectively.

  • PDF

OPTICAL PROPERTIES Of SEA WATER IN THE NORTHWEST PACIFIC (북서태평양에서의 해수의 광학적 성질)

  • YANG Yong Rhim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.237-241
    • /
    • 1977
  • Optical properties were studied in the Northwest Pacific near Kamchatka Peninsula based on ten oceanographic stations from September 20 to 24, 1976. Submarine light intensity was measured by usins a submarine illuminometer (RIGO, Type: 2501-A) ; equipped with a red filter (RIGO, Type: V-R-60, wave length: 600-620 nm). Light intensity in the upper 40 m depth layer was measured at 1 m depth intervals. The absorption coefficient for red color in the area ranged from 0. 178 to 0.376 (mean 0.278) : the Secchidisc depth in the area ranged from 9 to 12 meters (mean 10.6 meters). The relationship between absorption coefficient (m) and transparency depth (D) was m=5.347/D. The rates of light penetration for red color at three different depths are computed with reference to the surface light intensity. The mean rates of light penetration were $16.36\%\;(6.45\~23.5\%),\;3.65\%\;(1.38\~7.31\%)\;and\;0.276\%(0.048\~0.647\%) $ at the depths of s m, 10 m, and 20 m, respectively.

  • PDF

An Oceanic Front : The Formation of Tidal Fronts with Its Microscale Structure Evolution (해양전선 : 조석전선의 형성 및 그 미세구조의 전개 과정)

  • Yi-Gn Noh
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.21 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • The basic processes responsible for the generation of oceanic fronts were reviewed. In particular the process of a shelf sea front produced by tidal stirring was identified from the one dimensional model of the water column in the coastal area, which incorporates the microscale process for the formation of a tidal front. Also a new criterion to predict its location was suggested. The time evolutions of the distributions of density and turbulent kinetic energy calculated from the model show that the criterion for the formation of a thermocline can be predicted as $R{\delta}^4$~ constant for large $\delta$ ($\delta$>0.5), but the dependence on $\delta$ decreases as $\delta$ goes to O, where $R=H^4Q/{K_b}^3$,{\;}{\delta}=1-Do/H$, Q is the buoyancy flux at the surface, $K_b$ is the eddy diffusivity maintained at the bottom and Do is the depth of a thermocline in the absence of bottom mixing. The depth of a thermocline was found to decrease as the bottom mixing increases for a given value of Do. The results were interpreted in comparison with the previous studies.

  • PDF