• Title/Summary/Keyword: 해수 교환

Search Result 204, Processing Time 0.028 seconds

Efficiency Tests of Seawater Exchange System for Enhancement of Seawater Quality (해수교환시스템의 수질향상 효율평가)

  • Jang, Chang-Hwan;Kim, Sang-Taek;Kim, Hyo-Seob;Kim, Kyu-Han;Song, Man-Soon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.206-215
    • /
    • 2010
  • The multi-outlets were installed on the existing seawater exchange breakwater in order to improve seawater exchange rate at Jumunjin harbor. Physical and numerical model system were fulfilled for 4 cases to evaluate seawater exchange system which is able to discharge water remotely. The seawater circulation pattern and seawater exchange rate in the harbor were compared and analyzed. Consequently, total seawater exchange rate for CASE 1 was calculated 48% due to the dead zones which hinder seawater circulation in the harbor. Otherwise, the seawater exchange rates of CASE 2, CASE 3, and CASE 4 with the installation of the system were enhanced 19%, 15% and 17%, respectively compare to CASE 1.

Coastal Water Circulation Modeling with Water Exchange through Permeable Dike (투수성 호안제체을 통한 해수교환을 고려한 해수유동 모의)

  • Jung, Tae-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.301-307
    • /
    • 2006
  • In coastal zones with high tidal ranges like Korean western coast, port construction and reclamation projects have been increased. Most of the projects include sea-dyke construction. In the sea-dykes constructed to protect sea water intrusion, sea water was exchanged through the permeable dykes. The water level inside the area enclosed by the dykes changes with time due to tidal action of outer sea, but the tidal range is smaller than that of outside because of strong friction. In numerical modeling of coastal circulation the water exchange through the dykes has been neglected, which has produced inaccurate estimation neglecting the water exchange. In this study a method, which can consider water exchange through sea-dyke, was suggested and the modeling accuracy was improved. A groundwater theory was utilized to explain the phenomena.

입자추적모형에 의한 해수교환율 산정방법

  • 이종섭;이왕관;주귀홍
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.237-239
    • /
    • 2001
  • 항 또는 폐쇄성 만에서의 수질은 만내로 유입하는 오염부하량이 얼마나 원활하게 외해로 방출되느냐에 따라 좌우된다 이러한 문제는 해수교환, 해수교류라는 말로 표현되고 있다. 일반적인 교환의 개념에서 볼 때 해수교환이란 어떤 해역(수괴)과 어떤 해역(수괴)이 현상의 1주기 사이에 서로 해수를 교환하는 것을 말한다. 실제 해양에서 물질수송은 조류, 바람, 밀도류 그리고 해류등이 복합적으로 작용하고 있으며, 어떤 한 지점에서 1조석주기에 대하여 이러한 성분을 적분한 흐름을 잔차류라고 부른다. (중략)

  • PDF

Hydraulic Characteristics of the Wave Chamber Installed Rubble Mound Seawater Exchange Breakwater (유수실 내장 경사식 해수교환방파제의 수리특성)

  • 이달수;오영민;전인식;김창일
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.110-117
    • /
    • 2003
  • 해수교환방파제란 방파제에 설치된 통수구를 통해 해수가 항내로 일방향으로 유입되거나 통수구에서 양방향 흐름이 발생함으로써 종국에는 항내ㆍ외간의 해수교환이 활발하게 이루어지게 하는 방파제를 말한다. 그리고 방파제를 통한 순유입유량이 클수록 해수교환의 영향은 항내의 넓은 수역까지 미친다. (중략)

  • PDF

Hydro-hypsographic Analysis for Understanding of Flushing Characteristics in Garolim Bay (가로림만 해수 교환 특성 파악을 위한 Hydro-hypsographic 분석)

  • Woo, Han-Jun;Ryu, Joo-Hyung;Cho, Jin-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.39-46
    • /
    • 2009
  • Garolim Bay is typically a semi-enclosed bay without a significant supply of freshwater and sediments from surrounding drainage area. The bay have a variety of subenvironments including deep tidal channels, tidal flats, sand dunes, islands, and inlet. Because environmental quality of bay strongly depends on the exchange of water over benthic subenvironments, it is necessary to analyze quantitatively exchange of water between sea and bay. Hydro-hypsography is the relative distribution of water-surface areas at different depths. The hydro-hypsographic curve in Garolim bay shows that the tidal flats occupy about 77 % of the bay surface. Hydraulic turn-over time (HTT) is 1.32 tidal cycles which indicate well-flushed bay. Hydro-hypsometric techniques will be useful for assessments of health of bays.

  • PDF

A Study of Environment-friendly outer wall facilities for the improvement of port pollution (항내오염 개선을 위한 친환경 외곽시설에 관한 연구)

  • 김강민;강석형;유하상;김상훈
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.165-170
    • /
    • 2003
  • Due to the impermeability of outer wall facilities such a Breakwaters which dissipates the wave energy and keeps harbor tranquility, the water exchange can be worse and increased enclosed at the harbor. Recent trends of port development protect water quality and emphasize Water-Front, so the method which enhances the circulation of harbor waters and the dilution of the water pollutants are studied. The best improvement of water quality is a remove of pollutant source on land, but an enclosed port must be enhanced the tidal exchange. To this hence, the best improvement may be made on drain-route on the existing outer wall facilities. In this study, the numerical computations were carried out to predict the circulation of harbor waters and the tidal exchange in the polluted harbor(Samchonpo-guhang) located at the east coast of South Sea. Computational models adopting FDM(Finite Difference Method) were used here and were already verified from the previous studies and ocean survey. As a result of this study, the tidal exchange in Samchonpo-guhang before and after installation of drain-route is assessed.

  • PDF

Comparison of Seawater Exchange Rate of Small Scale Inner Bays within Jinhae Bay (수치모델을 이용한 진해만 내 소규모 내만의 해수교환율 비교)

  • Kim, Nam Su;Kang, Hoon;Kwon, Min-Sun;Jang, Hyo-Sang;Kim, Jong Gu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.74-85
    • /
    • 2016
  • For the assessment of seawater exchange rates in Danghangpo bay, Dangdong bay, Wonmun bay, Gohyunsung bay, and Masan bay, which are small-scale inner bays of Jinhae bay, an EFDC model was used to reproduce the seawater flow of the entire Jinhae bay, and Lagrange (particle tracking) and Euler (dye diffusion) model techniques were used to calculate the seawater exchange rates for each of the bays. The seawater exchange rate obtained using the particle tracking method was the highest, at 60.84%, in Danghangpo bay, and the lowest, at 30.50%, in Masan bay. The seawater exchange rate calculated based on the dye diffusion method was the highest, at 45.40%, in Danghangpo bay, and the lowest, at 34.65%, in Masan bay. The sweater exchange rate was found to be the highest in Danghangpo bay likely because of a high flow velocity owing to the narrow entrance of the bay; and in the case of particle tracking method, the morphological characteristics of the particles affected the results, since once the particles get out, it is difficult for them to get back in. Meanwhile, in the case of the Lagrange method, when the particles flow back in by the flood current after escaping the ebb current, they flow back in intact. However, when a dye flows back in after escaping the bay, it becomes diluted by the open sea water. Thus, the seawater exchange rate calculated based on the dye diffusion method turned out to be higher in general, and even if a comparison of the sweater exchange rates calculated through two methods was conducted under the same condition, the results were completely different. Thus, when assessing the seawater exchange rate, more reasonable results could be obtained by either combining the two methods or selecting a modeling technique after giving sufficiently consideration to the purpose of the study and the characteristics of the coastal area. Meanwhile, through a comparison of the degree of closure and seawater exchange rates calculated through Lagrange and Euler methods, it was found that the seawater exchange rate was higher for a higher degree of closure, regardless of the numerical model technique. Thus, it was deemed that the degree of closure would be inappropriate to be used as an index for the closeness of the bay, and some modifications as well as supplementary information would be necessary in this regard.

Tidal Exchange of Sea Water in Koje Bay (거제만의 해수교환)

  • KIM Jong-Hwa;CHANG Sun-Duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.101-108
    • /
    • 1985
  • The sea water exchange of Koje Bay in the southeastern part of the Korean Peninsula was estimated on the basis of current measurements and oceanographic observation. The exchange ratio was estimated by salinity differences and tidal prism method. The range of exchange ratio at the central part at the entrance of the bay is estimated to be around $26\%$ at spring tide and 5 to $15\%$ at neap tide. The magnitude of exchange ratio, however, can be changed due to water exchange, hydrometeorological and geomorphological conditions. The flushing time deduced by tidal prism was about 48 hours at spring tide and 81 hours at neap tide. Tidal induced eddy motion may play an important role on the seawater exchange in the bay.

  • PDF

Cross-Sectional Velocity Variability and Tidal Exchanger in a Bay (만구를 통한 해수유출입과 만내수괴의 해수교환성)

  • 김종화
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.4
    • /
    • pp.353-359
    • /
    • 1990
  • Chinhae Bay, included small ports, is the region which the red tide phenomenon is occurred frequently in summer season. Field sampling of 4 cross-sections in the bay resulted in detailed informations on cross-sectional velocity distributions, salt concentrations and discharge during one consecutive tidal cycle in summer season, 1983. High velocity cores reoccur two times a semi-diurnal tidal cycle at the same cross-sectional location, lower layer, in Kadok Channel during the spring tide. The tidal exchange ratio was estimated by Eulerian method. The range of exchange ratios in central Kadok Channel are 9.3-17% at the spring tide and 16.9-21.8% at the neap tide. On the other hand, its range in Masan bay-mouth is 8.7% at the spring tide and 2.0% neap tide, respectively.

  • PDF