Efficiency Tests of Seawater Exchange System for Enhancement of Seawater Quality

해수교환시스템의 수질향상 효율평가

  • Jang, Chang-Hwan (Department of Civil and Environmental Engineering, Kookmin University) ;
  • Kim, Sang-Taek (Department of Civil and Environmental Engineering, Kookmin University) ;
  • Kim, Hyo-Seob (Department of Civil and Environmental Engineering, Kookmin University) ;
  • Kim, Kyu-Han (Department of Civil Engineering, Kwandong University) ;
  • Song, Man-Soon (Department of Port and Harbor, Kunhwa engineering)
  • 장창환 (국민대학교 건설시스템공학부) ;
  • 김상택 (국민대학교 건설시스템공학부) ;
  • 김효섭 (국민대학교 건설시스템공학부) ;
  • 김규한 (관동대학교 토목공학과) ;
  • 송만순 ((주)건화 항만부)
  • Received : 2010.07.22
  • Accepted : 2010.08.03
  • Published : 2010.08.25

Abstract

The multi-outlets were installed on the existing seawater exchange breakwater in order to improve seawater exchange rate at Jumunjin harbor. Physical and numerical model system were fulfilled for 4 cases to evaluate seawater exchange system which is able to discharge water remotely. The seawater circulation pattern and seawater exchange rate in the harbor were compared and analyzed. Consequently, total seawater exchange rate for CASE 1 was calculated 48% due to the dead zones which hinder seawater circulation in the harbor. Otherwise, the seawater exchange rates of CASE 2, CASE 3, and CASE 4 with the installation of the system were enhanced 19%, 15% and 17%, respectively compare to CASE 1.

주문진항의 해수교환율을 증대시킬 목적으로 기존의 해수교환방파제에 원거리 방류가 가능하도록 다기수로를 설치하였다. 원거리 방류가 가능한 해수교환시스템의 성능을 평가하기 위해서 총 4개의 CASE를 선정하여 수리모형 실험과 수치모형실험을 실시하였고, 항내수역의 해수순환 양상과 해수교환율을 비교 및 분석하였다. 실험결과 기존의 해수교환방파제(CASE 1)를 통하여 유입된 해수는 정체수역의 발생으로 전체 해수교환율이 48%로 측정되었다. 반면, 원거리 방류가 가능한 해수교환시스템은 해수순환이 원활하지 않은 정체수역까지 외해수를 전달하여 CASE 2, CASE 3, 그리고 CASE 4의 경우 전체 해수교환율은 CASE 1에 비교하여 각각 19%, 15%, 그리고 17%가 향상되었다.

Keywords

References

  1. 국토해양. 1999, 해수교환방파제의 실용화 연구(I).
  2. 국토해양부. 2006, 항만 신공법사례집.
  3. 이창훈, 이달수, 오영민, 1999, 해수교환방파제의 L자형 수로 에서의 수위 공진. 대한토목학회논문집 제19권 제25호, 645-651.
  4. Akeda, S., Yamamoto, Y, and Kimura, K., 1998, Design and Construction of Seawater Exchange Breakwater. Coastal Engineering, 1539-1552.
  5. Boussinesq, J., 1872, Theorie des ondes et de remous qui se propagent Ie long d'um canal rectangulaire horizontale, en communiquant an liquis contenue dans Ie canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appliquess,Ser. 2. 17, pp. 55-108.
  6. Elder, J., 1959, The Dispersion of Marked Fluid in Turbulent Shear Flow. Journal of Fluid Mechanics. Vol. 5. 544-560. https://doi.org/10.1017/S0022112059000374
  7. Lee, D., Park, W. and Kobayasho, N., 1994, Circular Charmel Breakwater to Reduce Wave Overtopping and Allow Water Exchange. Proc. 24th Int. Conf. Coastal Eng., Kobe, 1373-1387.
  8. Ohmura, Y, Nakamura, T. and Ohi, K., 2005, Excitation of Vortex Induced Currents by Piston Mode Wave Resonance in Double- Curtain Walled Breakwaters. Proc. 29 ICCE, 3787-3799.
  9. Ohmura, Y, 2008, Mass Transport Induced Flow in Seawater Exchange Structures with Perforated Wall. ICCE, pp 245.
  10. Satoh, J., Akeda, S., Yano, K., Koyanagi, K., Miyada, S. and Kamise, T., 1994, Sea Water Exchange by Crenellated Breakwater with Water Chamber. 海洋聞發論文集 , Vol.10, 103-106.
  11. Yamamoto, Y, Kimura, K., Yano, K., Akeda, S., Takeda, Y and Sekiguchi, K., 1997, Design Wave Force on Perforated Caisson Breakwater with Wave Dissipating Blocks. 海洋聞發論文集, Vol.13, 549-554.
  12. Yamamoto, Y, MiZllllo, Y, Suzuki, T., Matsumoto, H. and Kuwahara, K., 1997, Estimation of the Wave Overtopping Rate for a Double Alignment Breakwater. 海洋聞發論文集, Vol.13, 585-590.
  13. 山本正昭, 中泉昌光, 間木文 1987. 提付防波提による 海水交流 工法の開. 第34回 海岸工講演論文集, 675-679