• Title/Summary/Keyword: 해수영향

Search Result 1,501, Processing Time 0.032 seconds

Groundwater Flow Characteristics Affected by the Seawater Intrusion near Simulated Underground Storage Caverns in the Coastal Area (임해지역의 모의 지하 비축 시설 주변에서 해수 침투에 의한 지하수 유동 특성)

  • 황용수;배현숙;서동일;김경수;김천수
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.17-29
    • /
    • 1999
  • There are three major processes to impact the groundwater flow near underground storage caverns in the coastal area; effect of topography, effect of sea water intrusion, and effect of excavation. In this paper, the effects of three items were numerically studied to identify the major cause for altering the flow pattern. It turned out that the excavation is the most significant effect on the groundwater flow system. The groundwater pressure distributions and consequent groundwater pathways were significantly altered near the openings. By increasing the groundwater pressures from water curtain holes, the potential leakage of storage cavern was properly prevented

  • PDF

Review on the Relative Sea-level Changes in the Yellow Sea during the Late Holocene (한반도 서해안의 후기 홀로세 해수면 변동 곡선에 대한 검토)

  • Choi, Sung-Ja
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.463-471
    • /
    • 2018
  • In this paper, we review previous studies on the relative sea-level changes in the Yellow Sea during the Holocene to comprehensive understand the various research results. Currently, it is reported two theories : 1) the Holocene sea-level has never been higher than the present-day level; and 2) sea-level have reached highstand during mid-Holocene, followed by slow lowering to that of the present. The first theory yields a curve that is similar to a climate-change-related eustatic sea-level curve. However, in reality, most of the relative sea-level fluctuation resulted from land uplift or subsidence. The second theory yields a curve that is fairly coincident with a relative sea-level curve indicative of continental margins being located away from the ice sheets(i.e., far-field), and is considered as an effect of GIA(Glacio Isostatic Adjustment) and gravitational attraction. Based on detailed review of previous researches, we realized that they sourced the same papers, but obtained different results because they selectively chose and added the data. The data used to derive the second theory pertain to the northern Gunsan region, which is located within the western area of the Chugaryeong fault. Thus, we believe that the sea-level curve for the second theory is only representative of the area north of Gunsan, which is subject to GIA and tectonic deformation. Although the relative sea-level curve for the west coastal area is comparable to that for the far-field continental margin region, it is necessary to evaluate local tectonic activities as suggested by active seismicity in the west coastal area and the more than 400 faults currently existing in on the Korean Peninsula.

Influence of Dissolved Gases on Crystal Structure of Electrodeposition Films Containing Calcium and Magnesium in Seawater (해수 중 칼슘 및 마그네슘을 포함한 전착 코팅막의 결정구조에 미치는 용해 기체의 영향)

  • Park, Jun-Mu;Seo, Beom-Deok;Lee, Seul-Gi;Kim, Gyeong-Pil;Gang, Jun;Mun, Gyeong-Man;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.116-116
    • /
    • 2018
  • 부식은 재료와 사용 환경과의 상호작용에 의한 결과로서 일반적으로 두께의 감소와 균열의 발생 및 파손 등의 문제로 나타난다. 특히 사용환경 중에서 해수 분위기는 금속의 부식에 가장 유리한 조건이다. 따라서 해양환경 중 항만이나 조선 및 해양 산업 등에 많이 이용되는 강 구조물은 이에 대응하기 위하여 도장방식이나 음극방식을 사용하고 있다. 여기서 음극방식은 피방식체를 일정전위로 음극 분극하는 원리로써 외부전원을 인가하거나 비전위의 금속을 전기적으로 연결하여 방식하는 방법이다[1]. 한편, 해수 중에서 이와 같은 원리로 음극방식 할 경우에는 피방식체인 강재표면에 부분적으로 칼슘 또는 마그네슘 화합물 등의 생성물이 부착하는 현상을 볼 수 있게 된다. 이와 같이 수산화마그네슘($Mg(OH)_2$)및 탄산칼슘($CaCO_3$)을 주성분으로 하여 석출되는 석회질 피막(calcareous deposits)은 피방식체에 유입되는 음극방식 전류밀도를 감소시켜 주거나 물리적 장벽의 역할을 함으로써 외부의 산소와 물 등 부식환경으로부터 소지금속을 보호한다[2]. 그러나 석회질 피막은 소지금속과의 결합력, 막의 균일한 분포, 내식성 및 제작시간의 단축 등 해결해야 할 과제가 있다. 또한 여러 가지 환경 조건 등의 영향을 받아 그 피막의 형성 정도도 가늠하기 어렵기 때문에 음극방식 설계 시 그 정도에 따른 영향을 고려-반영하기가 곤란하다. 따라서 본 연구에서는 석출속도, 밀착성 및 내식특성을 향상시키기 위해 전착프로세스를 통해 해수 중 기체를 용해시켜 석회질 피막을 제작하고 막의 결정구조 제어 및 특성을 분석-평가하였다. 본 연구에 사용된 강 기판(Steel Substrate)은 일반구조용강(KS D 3503, SS400)을 사용하였으며, 외부전원은 정류기(Rectifier, xantrex, XDL 35-5T)를 사용하여 3 및 $5A/m^2$의 조건으로 인가하였다. 양극의 경우에는 해수에 녹아있는 이온 이외에 다른 성분들이 환원되는 것을 방지하기 위해 불용성 양극인 탄소봉(Carbon Rod)을 사용하였다. 이때 석출속도, 밀착성 및 내식특성 향상을 위해 해수에 주입한 기체의 양은 0.5 NL/min였으며, 기판 근처에 고정하여 음극 부근에서의 반응을 유도하였다. 각 조건별로 제작된 막의 표면 모폴로지, 조성원소 및 결정구조 분석을 실시하였으며, 석회질 피막의 밀착성과 내식특성을 평가하기 위해 규격에 따른 테이핑 테스트(Taping Test, ISO 2409)와 3 % NaCl 용액에서 전기화학적 양극 분극 시험을 진행하여 제작된 막의 내구성과 내식성을 분석-평가하였다. 시간에 따른 전착막의 외관관찰 결과 전류밀도의 증가와 함께 상대적으로 많은 피막이 형성되었고, 용해시킨 기체에 의해 더 치밀하고 두터운 피막이 형성됨을 확인할 수 있었다. 성분 및 결정구조 분석 결과 $Mg(OH)_2$ 성분의 Brucite 및 $CaCO_3$ 성분의 Calcite 및 Aragonite 구조를 확인하였으며, 용해시킨 기체의 영향으로 $CaCO_3$ 성분의 Aragonite 구조가 상대적으로 많이 검출되었다. 밀착성 및 내식성 평가를 실시한 결과 해수 중 용해시킨 기체에 의해 제작한 시편의 경우 견고하고 화학적 친화력이 높은 Aragonite 결정이 표면을 치밀하게 덮어 전해질로부터 산소와 물의 침입을 차단하는 역할을 하여 기체를 용해시키지 않은 3 및 $5A/m^2$ 보다 비교적 우수한 밀착성 및 내식 특성을 보이는 것으로 사료된다.

  • PDF

Effect of Model Resolution on The Flow Structures Near Mesoscale Eddies (수치모델 해상도가 중규모 와동 근처의 난류구조에 미치는 영향)

  • Chang, Yeon S.;Ahn, Kyungmo;Park, Young-Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.79-93
    • /
    • 2015
  • Three-dimensional structures of large ocean rings in the Gulf Stream region are investigated using the HYbrid Coordinate Ocean Model (HYCOM). Numerically simulated flow structures around four selected cyclonic and anticyclonic rings are compared with two different horizontal resolutions: $1/12^{\circ}$ and $1/48^{\circ}$. The vertical distributions of Lagrangian Coherent Structures (LCSs) are analyzed using Finite Size Lyapunov Exponent (FSLE) and Okubo-Weiss parameters (OW). Curtain-shaped FSLE ridges are found in all four rings with extensions of surface ridges throughout the water columns, indicating that horizontal stirring is dominant over vertical motions. Near the high-resolution rings, many small-scale flow structures with size O(1~10) km are observed while these features are rarely found near the low-resolution rings. These small-scale structures affect the flow pattern around the rings as flow particles move more randomly in the high-resolution models. The dispersion rates are also affected by these small-scale structures as the relative horizontal dispersion coefficients are larger for the high-resolution models. The absolute vertical dispersion rates are, however, lower for the high-resolution models, because the particles tend to move along inclined eddy orbits when the resolution is low and this increases the magnitude of absolute vertical dispersion. Since relative vertical dispersion can reduce this effect from the orbital trajectories of particles, it gives a more reasonable magnitude range than absolute dispersion, and so is recommended in estimating vertical dispersion rates.

Effect of seawater on the applicability of a slurry shield TBM (해수가 슬러리 쉴드 TBM 공법 적용성에 미치는 영향)

  • Ryu, Young-Moo;Kim, Hae-Mahn;Kim, Do-Hyung;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.243-256
    • /
    • 2019
  • Formation of filter cake with little slurry penetration into the tunnel face ground is an essential factor to successfully apply the slurry shield tunnel boring machine (TBM) for tunnelling work. However, when the bentonite slurry is in contact with seawater, it is not easy to guarantee the filter cake formation due to decrease of the swelling volume and viscosity of the slurry. In this study, in order to evaluate the effect of the seawater on the applicability of the slurry shield TBM method, the slurry injection tests were carried out with the variation of seawater percentage contained in the slurry samples as well as the variation of soil types. And then, the effect of these two factors on the slurry clogging phenomena was theoretically and experimentally figure out. As a result, it was found that the value of the slurry clogging criteria (SCC) indicating the applicability of the slurry shield TBM significantly decreases up to 67% as the percentage of seawater increases from 0% up to 20%. In addition, it was found to be necessary to take into account both the characteristics of slurry and soil types together when judging the applicability of the slurry shield TBM method by assessing the slurry penetration characteristics that will occur during tunnelling work.

Effect of Sea Water on Curing and Strength of Cemented Sand (해수가 고결모래의 양생 및 강도에 미치는 영향)

  • Park, Sung-Sik;Lee, Jun-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.71-79
    • /
    • 2012
  • Sand compaction pile and stone column replacement methods have been commonly used for improving soft ground in the nearshore. Recently, DCM (Deep cement mixing) method, which can harden soft clays by mixing with cement, is more popularly used in such soft ground improvement. Sandy soils also exist in the seashore. Therefore, in this study, the effect of salinity in sea water and curing methods on the strength of cemented sand was evaluated in terms of unconfined compressive strength (UCS). The sand was mixed with five different cement ratios and distilled water or sea water, and then compacted into a cylindrical specimen. They were cured for 3 days under sea water for DCM construction condition and air cured for onshore curing condition. When a specimen was cured under sea water without confinement, it was easily collapsed due to initiation of cracks. When the cement ratio and curing method were the same, the UCS of the specimen without sea water was at maximum 3.5 times higher than those with sea water. The sea water used for mixing sand had more influence on strength reduction than the sea water used for curing. When the cement ratio was the same, the UCS of air-cured specimen was at average 2 times higher than those of water-cured specimen, regardless of water used.

Change of Mean Sea Level due to Coastal Development and Climate Change in the Western Coast of Korean Peninsula (해안개발과 기후변화로 인한 서해 연안해역의 평균해수면 변화)

  • Jung, Tae Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.120-130
    • /
    • 2014
  • Change of mean sea level in the western coast of Korean peninsula was estimated with the observed tide data of the KHOA. The cause of the change was investigated. Mean sea levels in the western coast have been changed due to coastal development projects in the coastal zone. The estimated variations, which are significantly different regionally, vary from -6.8 cm in Incheon to 38 cm in Gunsan. The changing rate of mean sea level occurred by natural factors such as global warming varies from 1.1 mm/year in the north to 4.4 mm/year in the south of western coast of Korean peninsula. In Jeju, sea level rise and rise of sea temperature showed a close relationship. Water temperature rise of one degree increases mean sea level to 0.6 mm in Jeju. Rising rate of mean sea level has increased rapidly after the mid-1980s.

연강용접 이음의 해수 중에서의 부식피로강도에 대하여

  • 영정흔일
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.34-44
    • /
    • 1983
  • 이 논문에서는 먼저 연강 모재에 대해서 여러 가지의 반복 속도로 대기 중과 해수 중 및 3% Nacl 용액 중에서의 피로시험을 실시하고, 피로 균열 발생수명 및 전파수명에 미치는 속도의 영향을 검사함과 동시에 피로수명의 추정법에 대해서 해설한다. 그리고 연강의 완전용입 용접 이음의 toe 부에 대하여 추정한 피로 균열 발생수명과, 파랑주기에 가까운 10cpm의 반복 속도에서 피로시험을 실시하여 구한 수명과를 비교한 결과에 대해서도 소개하고자 한다.

  • PDF

Influence of the Increase of Dissolved $CO_2$ Concentration on the Marine Organisms and Ecosystems (해수중 용존 $CO_2$ 농도 증가가 해양생물 및 해양생태계에 미치는 영향: 국내외 사례 연구)

  • Lee, Jung-Suk;Lee, Kyu-Tae;Kim, Chan-Kook;Park, Gun-Ho;Lee, Jong-Hyeon;Park, Young-Gyu;Gang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.243-252
    • /
    • 2006
  • Influence of the increasing carbon dioxide concentration in seawater on various marine organisms is assessed in this article with regard to the impacts of anthropogenic $CO_2$ introduced into surface or deep oceans. Recent proposals to sequester $CO_2$ in deep oceans arouse the concerns of adverse effects of increased $CO_2$ concentration on deep-sea organisms. Atmospheric introduction of $CO_2$ into the ocean can also acidify the surface water, thereby the population of some sensitive organisms including coral reefs, cocolithophorids and sea urchins will be reduced considerably in near future (e.g. in 2100 unless the increasing trend of $CO_2$ emission is actively regulated). We exposed bioluminescent bacteria and benthic amphipods to varying concentrations of $CO_2$ and also pH for a short period. The ${\sim}l.5$ unit decrease of pH adversely affected test organisms. However, amphipods were not influenced by decreasing pH when HCl was used for the seawater acidification. In this article, we reviewed the biological adverse effects of $CO_2$ on various marine organisms studied so for. Theses results will be useful to predict the potential risks of the increase of $CO_2$ concentrations in seawater due to the increase of atmospheric $CO_2$ emission and/or sequestration of $CO_2$ in deep oceans.

  • PDF

A fundamental study of slurry management for slurry shield TBM by sea water influence (해수의 영향에 따른 이수식 TBM의 슬러리 관리를 위한 기초적 연구)

  • Kim, Dae-Young;Lee, Jae-won;Jung, Jae-Hoon;Kang, Han-Byul;Jee, Sung-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.463-473
    • /
    • 2017
  • Bentonite swells when it comes into contact with water and makes it a viscous fluid. Thus it is widely used in civil engineering works for waterproofing. Utilizing the properties of bentonite, the slurry shield TBM supports excavated face with pressurized slurry as well as transporting excavated muck. When bentonite is in contact with seawater, due to the change of double layer thickness, its expandability and viscosity are lowered. This may cause problems for excavation stability and muck discharge due to the increase of sea water inflow when Slurry TBM is used under sea water conditions. In this study, the change of slurry condition caused by the inflow of sea water during tunnel excavation with Slurry TBM was investigated and a slurry management guideline was proposed. For this purpose, a laboratory test was carried out based on the slurry management criterions applied in the field, and a method applicable to the field where sea water is affected has been proposed.