• Title/Summary/Keyword: 해성단구

Search Result 13, Processing Time 0.025 seconds

The Distribution, Ages and Uplift Ratio ofmarine Terraces in SE coast of Korea: Review (동해안 해성단구 분포, 형성시기 및 융기율 검토)

  • Kim, Ju-Yong;Yang, Dong-Yoon;Kim, Jin-Kwan;Lee, Jin-Young;Kim, Jeong-Chan;Hong, Sei-Sun;Oh, Keun-Chang;Choi, Don-Won
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.1
    • /
    • pp.27-40
    • /
    • 2005
  • Researches onmarine terrace in Korea have been drastically progressed during the last two decades.main themes of researches include vertical and horizontal distribution of paleo-shoreline, sedimentary facies ofmarine terrace deposits, OSL dating of terrace deposits and estimation of uplift rate. At present, it is noted thatmarine terraces distributed at the same altitude do not always show the same sedimentary facies, nor have the same ages.marine terraces are generally divided into five terrace systems, of which ages increase in ascending order. There are some arguments about discrimination between 2nd and 3rd terrace systems and their age. The core discrepancy lies on the question of whether the level of the last interglacial terrace is on the level of about 20m or on the 30~35m(~40m) in altitude. The uplift rate based on the paleoshoreline distribution ranges between 0.10 and 0.20m/ka.

  • PDF

Fluvial Terraces of the Lower Yeongsan River, Southwestern Coastal Region of Korean Peninsula (영산강 하류 지역의 하안단구)

  • Choi, Seong-Gil
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.1 s.22
    • /
    • pp.41-46
    • /
    • 2004
  • The fluvia(thalassostatic) terraces have been developed among the lower Yeongsan river, near the southwestern coastal region of Korean peninsula. These thalassostatic terraces could be classified into 3 surface, i. e., Yeongsan 32m, 18m, and 10m surface, in desending order, according to the relative heights from the river floor. Yeongsan 32m, 18m and 10m surfaces were corresponded to the mMT3, mLT1 and mLT2 surfaces of Choi(2003), respectively. It was revealed that the mLT1 surface was the marine terraces which had been formed in the Last Interglacial culmination period(oxygen isotope stage 5e) in the southeastern coast of Korean peninsula.

  • PDF

한반도 남동부해안의 고위 해성단구군

  • Choi, Sung-Gil;Jang, Ho;Kim, Ju-Yong
    • Proceedings of the KGS Conference
    • /
    • 2003.05a
    • /
    • pp.65-68
    • /
    • 2003
  • 우리나라 동해안의 해성단구 연구에 있어서 1990년대의 중반까지는 Kim, S. W.(1973)의 봉화재면(구정선 고도 130m)을 제외하고는, 주로 구정선 고도 80m~90m 이하의 해성단구면을 대상으로 연구가 진행되어 왔다(오, 1977; 조, 1978; Oh, 1981; Lee, 1987; Kim, J. Y., 1990; 최, 1995a, 1995b, 1996; 최, 1997; 김 외, 1998). 그러나 1990년대의 후기 이후에는 loom 이상의 구정선 고도를 갖는 해성단구에 대한 보고가 윤 외(1999), 황상일 외(2000), 윤 황(2000) 등에 의하여 이루어져 왔다. (중략)

  • PDF

The Ages of Fault Activities of the Ilgwang Fault in Southeastern Korea, Inferred by Classification of Geomorphic Surfaces and Trench Survery (지형면 분류 및 트렌치 조사에 의한 일광단층의 단층활동시기 추정)

  • Jang, Ho;Lee, Jin-Han;An, Yun-Seong;Joo, Byeong-Chan
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.1 s.22
    • /
    • pp.21-30
    • /
    • 2004
  • The Ilgwang Fault is NNE-striking, elongated 40 Km between Ulsan and Haeundae-ku, Busan in southeastern part of the Korean Peninsula. This paper si mainly concerned about the ages of the fault activities especially in the Quaternary, inferred from classification of geomorphic surfaces and trench excavation for the construction of Singori nuclear power plant. The geomorphic surfaces are classified into Beach and the Alluvial plain, the 10 m a.s.l. Marine terrace(MIS 5a), the 20 m a.s.l. Marine terrace(MIS 5e), the Reworked surface of 45 m a.s.l. Marine terrace(MIS 7 or 9) and the Low relief erosional surface. The Low relief erosional surface is distributed coastal side, the Reworked surface of 45m a.s.l. Marine terrace inland side by the Ilgwang Fault Line as the boundary line. But the former is above 10 m higher in relative height than the latter. The 20 m a.s.l. Marine terrace on the elongation line of the Ilgwang Fault reveals no dislocation. A site was trenched on the straight contact line with $N30^{\circ}E$-striking between the 10 m a.s.l. Marine terrace and the 20 m a.s.l. Marine terrace. Fault line or dislocation was not observable in the trench excavation. Accordingly, the straight contact line is inferred as the ancient shore line of the 10 m a.s.l. Marine terrace. The Ages of the Fault activities are inferred after the formation of the Ichonri formation - before the formation of the 45 m a.s.l. Marine terrace(220 Ka. y. B.P. or 320. Ka. y. B.P.). The Low relief erosional surface was an island above the sea-level during the formation of the 45 m a.s.l. marine terrace in the paleogeography.

  • PDF

Correlation and Chronology of the Marine Terraces and Thalassostatic Terraces in the Yeongdeok Coast, South Eastern Korean Peninsula (영덕 일대의 해성단구와 해면변동단구의 대비와 편년)

  • Choi, Seong Gil;Chang, Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.81-96
    • /
    • 2019
  • The Yeongdeok 53m marine terrace (Y53mT), Y43mT, Y33mT, Y24mT, Y19mT and Y11mT distributed along the Yeongdeok coast, southeastern Korean Peninsula are well compared with the thalassostatic terraces of the high terrace 1 (ℓHT1 ; 51m of the relative heights from the river floor), high terrace 2 (ℓHT2 ; 43m), middle terrace 1 (ℓMT1 ; 32m), middle terrace 2 (ℓMT2 ; 25m), lower terrace 1 (ℓLT1 ; 18m) and lower terrace 2 (ℓLT2 ; 10m) respectively, developed along the lower reaches of the Chucksan-cheon and Obo-cheon rivers, judging from the comparison of paleosols (red soils) between the above marine and thalassostatic terraces. Using the Y19mT of the MIS 5e as the key surface, we propose that the terraces of the Y53mT and ℓHT1, Y43mT and ℓHT2, T33mT and ℓMT1, Y24mT and ℓMT2, Y19mT and ℓLT1, and Y11mT and ℓLT2 have been formed at the MIS 11, 9, 7e and 7a (or 7a), 5e and 5a respectively. The red soils have been developed at the Y19mT and ℓLT1 and above them, but not on the Y11mT and ℓLT2 surfaces.

The Examination of the Limitations of Using the OSL Dates Derived from this Study in the Correlation of MIS 5 Marine Terraces Distributed in the Southeastern Coast of the Korean Peninsula (한반도 남동부 해안 해성단구의 분류와 편년에 있어서 본 연구에서 도출된 OSL 연대 적용의 한계성 검토)

  • Choi, Seong Gil;Tamura, Toshikazu;Miyauchi, Takahiro;Tsukamoto, Sumiko
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.4
    • /
    • pp.63-75
    • /
    • 2018
  • The lower marine terrace 1 and 2 surfaces distributed between Ulsan and Pohang coast in the southeastern coast of the Korean penninsula have been correlated with MIS 5e and 5a (or 5c) by amino acid dates, 14C dates, wide-spread tephra correlation and pollen analysis respectively. In this study, to test the reliability of the OSL method for the estimation of the numerical burial age of marine sediment deposits, we analyzed the samples from the marine terraces which have been known as typical marine terraces formed during MIS 5e and MIS 5a in the above-mentioned coast. The burial ages of the marine deposit of the lower marine terrace 1 and 2, with paleoshoreline altitudes of 18m to 19m and 10m to 11m respectively, both showed about the same age of 60 ka BP. The lower marine terraces 1 and 2, however, were divided into two terrace surfaces by a clear terrace cliff. Besides, the OSL dates of the lower and upper parts of the lower marine terrace 2 of the Bonggil coast showed the reversed burial ages. In the lower marine terrace 1 of the Sanhari coast, almost the same burial ages were derived from both the lower part (marine rounded gravel layer) and the upper part (terrestrial angular gravel layer) of the terrace deposit. Therefore, at the present time, judging from only the OSL dates measured in this study, it could be argued that the OSL method is not the best for the estimation of forming periods of the lower marine terraces 1 and 2 and their classification.

The estimation of the marine terrace of the Last Interglacial culmination stage(MIS 5e) in the Sanhari of Ulsan coast,southeastern Korea (울산 해안의 최종간빙기 최온난기 추정 해성단구)

  • Choi, Seong-Gil
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.47-59
    • /
    • 2016
  • The formation age and depositional environment of the marine terrace I of the estimated paleoshoreline altitude of 18m in Sanhari of Ulsan coast, southeastern Korea were investigated on the basis of examination of lithofacies and stratigraphy of terrace deposits. Marine deposits of the terrace is composed of rounded boulders(70cm in diameter) and rounded pebbles(1.0cm in diameter) which overlay them. The above rounded boulders which lie on the paleo-shore platform are considered to have been formed by wave abrasion in the same period that the paleo-shore platform was developed. The rounded pebbles which lie on the rounded boulder layer are considered to have been deposited in gravel beach and berm environment, judging from the laminae developed in this layer. The paleo-shore platform and marine rounded gravel layer of the terrace are assumed to have been formed in the large transgression period of the Last Interglacial culmination stage(MIS 5e), judging from the comparision of the formation age of 125ka B.P. of Juckcheon terrace I in the adjacent Pohang coast which was dated by amino acid dating. The terrestrial deposit of this terrace was largely composed of angular and subangular gravel mixed with marine rounded pebble which has been carried away mainly from the deposit of previous marine terraces and redeposited in this terrace. The lowest peat layer of terrastrial deposit was considered to have been deposited during the period from the late MIS 5e which is the estimated finishing time of deposition of the above marine gravels to the early stage of following regression period(MIS 5d) in which the sea level was still high. The sediments of angular and subangular gravel deposit which lie on this peat layer were assumed to have been deposited during the period from the early stage of the first regression period(MIS 5d) of the Last Interglacial to the Last Glacial. The lower part of the angular gravel layer is composed of the deposits of the fluvial and colluvial sediments, whereas most of the upper and middle part of the layer is mainly composed of angular gravels of colluvial sediments formed in the cold environment.

The comparison and chronology of the lower marine terraces in the mid-eastern coast of Korean peninsula (韓反島 中部東海岸 低位海成段丘의 對比와 編年)

  • ;Choi, Seong-Gil
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.2
    • /
    • pp.103-119
    • /
    • 1995
  • This Paper aims to compare the lower marine terraces distributed from Muckho to Gangneung in the mid-eastern coast of Korean peninsula by the geomorphic method of using characteristies of terrace features and terrace deposits, paleosol, and fossil cryogenic structures, and to estimate the age of the lower marine terraces on the basis of the comparisons of those with the characteristics of thalassostatic terrace in adjacent rivers. The 1ower marine terraces in this area can be classified into two levels, i.e., lower marine terrace I and II surfaces, in desending order, according to the difference of former shoreline altitude. The former shoreline heights of the lowerm marine terrace I and II surfaces are 18m and 10m, respectiveiy. The width of the I surface is broader and distributed more continuousiy than that of II surface. Daejin I surface in Muckho coast, and Myeongju and Anin terrace in Gangneung coast could be classified into the lower marine terrace I surface, and Daejin II surfaCe into II surface. The Surface of ancient shore platform of the lower marine terrace I and II surfaces were weathered, and the color of the terrace deposit ranges from red to reddish brown. And this terrace deposit is covered with slope deposit of Last Glacial or fossil periglacial structures (platy structure and vecicle) of Last Glacial are formed in terrace deposit. These facts indicate that the lower marine terrace I and II surfaces had been formed before the Last Glacial, and then affected by chemical weathering under warm environment, finally followed by cold period. But the deposit of the lower marine terrace I surface is more weathered than that of II surface. And pseudogleyed red soil, which is developed in I but not in II surface, could be judged to have been formed in the Last Interglacial culmination stage (Oxygen isotope stage 5e). Therefore, in terms of the degree of weathering of the terrace deposit and the existence of pseudogleyed red soil, the age of both terrace is thought to be a little different. And the characteristics of the above mentioned II surface are accord with those of thalassostatic terrace formed in middle or late period of the Last Interglacial (5e or 5a). Thus on the basis of above all points, the lower marine terrace I and II surfaces in this area could be seen to have formed in the Last Interglacial culmination stage and middle or late period of the Last Interglacial, respectively. Because the lower mamine terrace I surface is broadry distributed in the eastern coast of Korea nPeninsula, the surface could be used to be a key surface in studying Quaternary marine terraces.

  • PDF

A Marine Terrace Correlated to MIS 5e on the Basis of Pollen Analysis at Sanha-Dong, Ulsan, Southeastern Coast of the Korean Peninsula (화분분석에 의한 한국 남동부 해안 산하동 일대의 MIS 5e 대비 해성단구 동정)

  • Choi, Seong Gil;Shin, Hyeoncho;Park, Ji Hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.3
    • /
    • pp.1-11
    • /
    • 2017
  • The pollen analysis on the deposits of the lower marine terrace I of the estimated paleoshoreline height of 18m was performed in order to estimate the formation age of this terrace developed at the Sanha-dong coast, Ulsan, southeastern coast of the Korean peninsula. The pollen assemblage of the peat layer of SH-1 pollen zone (Quercus-Ulmus/Zelkova zone), lying directly on the marine rounded pebble layer of this terrace, shows that the climatic environment of the deposition period of SH-1 pollen zone was almost similar to that of the Postglacial climatic optimum period, but slightly cooler than that of the late warm stage of Last Interglacial(MIS 5a) in the eastern coast of Korea. This heightens the possibility that the deposition period of the marine rounded pebble layer which was covered by the above SH-1 peat layer is the MIS 5e which has been estimated by a previous study of the sedimentary facies of this terrace deposits (Choi, 2016). The pollen assemblage of SH-2 pollen zone (Pinus-Quercus zone) shows that the climate of this period was almost similar to that of the late Postglacial, but slightly cooler than that of the period of SH-1 pollen zone. This means that the climate around the Sanha-dong was still warmer in the deposition period of the peat layer of SH-2 pollen zone. Thus, the peat layer of SH-2 pollen zone was considered to have been deposited during the period from the early regression stage of the MIS 5d which is the estimated final stage in the deposition period of the above peat layer of SH-1 pollen zone to any stage in which the warmer environment of MIS 5 has still lasted. The humic silt layer of SH-3 pollen zone (Pinus-Ulmus/Zelkova-Abies zone) is assumed to have been deposited during the interstadial of the Last Glacial (MIS 3).

Holocene Sea Level Reflected from Marine Terrace in Geoje Island and its Influences on Coastal Morphogenesis (거제도 동부해안에서 파악되는 홀로세 고해수준면과 지형발달과정)

  • YANG, Jae-Hyuk
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2011
  • Coastal terrace was developed at 7.2m height near Shinchon village in Geoje Island. It is located on the east side of southern coast in Korean Peninsula, where sea-level changes caused by ebb and flow of the tide, embayment are relatively low. Due to the breccia layer by mass-movement, dark grayish clayey formation, marine origin's rounded gravel are deposited sequentially in a cross-section of coastal terrace, so it provides a good example which understand Holocene sea level changes to determine the effect on the various sedimentary environments. For the purpose of identifying the morphogenetic process, Grain size, Roundness, XRD, AMS dating analysis was attempted. As a result, after last glacial age, Holocene sea level rise to +5.6m(4,740±100yrs BP). At that time, various geomorphological features are considered to be formed.