• Title/Summary/Keyword: 해상 데이터 관리

Search Result 186, Processing Time 0.024 seconds

A Study on the Optimization Period of Light Buoy Location Patterns Using the Convex Hull Algorithm (볼록 껍질 알고리즘을 이용한 등부표 위치패턴 최적화 기간 연구)

  • Wonjin Choi;Beom-Sik Moon;Chae-Uk Song;Young-Jin Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.164-170
    • /
    • 2024
  • The light buoy, a floating structure at sea, is prone to drifting due to external factors such as oceanic weather. This makes it imperative to monitor for any loss or displacement of buoys. In order to address this issue, the Ministry of Oceans and Fisheries aims to issue alerts for buoy displacement by analyzing historical buoy position data to detect patterns. However, periodic lifting inspections, which are conducted every two years, disrupt the buoy's location pattern. As a result, new patterns need to be analyzed after each inspection for location monitoring. In this study, buoy position data from various periods were analyzed using convex hull and distance-based clustering algorithms. In addition, the optimal data collection period was identified in order to accurately recognize buoy location patterns. The findings suggest that a nine-week data collection period established stable location patterns, explaining approximately 89.8% of the variance in location data. These results can improve the management of light buoys based on location patterns and aid in the effective monitoring and early detection of buoy displacement.

An application of MMS in precise inspection for safety and diagnosis of road tunnel (도로터널에서 MMS를 이용한 정밀안전진단 적용 사례)

  • Jinho Choo;Sejun Park;Dong-Seok Kim;Eun-Chul Noh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.113-128
    • /
    • 2024
  • Items of road tunnel PISD (Precise Inspection for Safety and Diagnosis) were reviewed and analyzed using newly enhanced MMS (Mobile Mapping System) technology. Possible items with MMS can be visual inspection, survey and non-destructive test, structural analysis, and maintenance plan. The resolution of 3D point cloud decreased when the vehicle speed of MMS is too fast while the calibration error increased when it is too slow. The speed measurement of 50 km/h is determined to be effective in this study. Although image resolution by MMS has a limit to evaluating the width of crack with high precision, it can be used as data to identify the status of facilities in the tunnel and determine whether they meet disaster prevention management code of tunnel. 3D point cloud with MMS can be applicable for matching of cross-section and also possible for the variation of longitudinal survey, which can intuitively check vehicle clearance throughout the road tunnel. Compared with the measurement of current PISD, number of test and location of survey is randomly sampled, the continuous measurement with MMS for environment condition can be effective and meaningful for precise estimation in various analysis.

Evaluation of the Utilization Potential of High-Resolution Optical Satellite Images in Port Ship Management: A Case Study on Berth Utilization in Busan New Port (고해상도 광학 위성영상의 항만선박관리 활용 가능성 평가: 부산 신항의 선석 활용을 대상으로)

  • Hyunsoo Kim ;Soyeong Jang ;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1173-1183
    • /
    • 2023
  • Over the past 20 years, Korea's overall import and export cargo volume has increased at an average annual rate of approximately 5.3%. About 99% of the cargo is still being transported by sea. Due to recent increases in maritime cargo volume, congestion in maritime logistics has become challenging due to factors such as the COVID-19 pandemic and conflicts. Continuous monitoring of ports has become crucial. Various ground observation systems and Automatic Identification System (AIS) data have been utilized for monitoring ports and conducting numerous preliminary studies for the efficient operation of container terminals and cargo volume prediction. However, small and developing countries' ports face difficulties in monitoring due to environmental issues and aging infrastructure compared to large ports. Recently, with the increasing utility of artificial satellites, preliminary studies have been conducted using satellite imagery for continuous maritime cargo data collection and establishing ocean monitoring systems in vast and hard-to-reach areas. This study aims to visually detect ships docked at berths in the Busan New Port using high-resolution satellite imagery and quantitatively evaluate berth utilization rates. By utilizing high-resolution satellite imagery from Compact Advanced Satellite 500-1 (CAS500-1), Korea Multi-Purpose satellite-3 (KOMPSAT-3), PlanetScope, and Sentinel-2A, ships docked within the port berths were visually detected. The berth utilization rate was calculated using the total number of ships that could be docked at the berths. The results showed variations in berth utilization rates on June 2, 2022, with values of 0.67, 0.7, and 0.59, indicating fluctuations based on the time of satellite image capture. On June 3, 2022, the value remained at 0.7, signifying a consistent berth utilization rate despite changes in ship types. A higher berth utilization rate indicates active operations at the berth. This information can assist in basic planning for new ship operation schedules, as congested berths can lead to longer waiting times for ships in anchorages, potentially resulting in increased freight rates. The duration of operations at berths can vary from several hours to several days. The results of calculating changes in ships at berths based on differences in satellite image capture times, even with a time difference of 4 minutes and 49 seconds, demonstrated variations in ship presence. With short observation intervals and the utilization of high-resolution satellite imagery, continuous monitoring within ports can be achieved. Additionally, utilizing satellite imagery to monitor changes in ships at berths in minute increments could prove useful for small and developing country ports where harbor management is not well-established, offering valuable insights and solutions.

Reefer Container Monitoring System using Trajectory Information (궤적 정보를 이용한 냉동 컨테이너 모니터링 시스템)

  • Lee, Myung-Jin;Lee, Eung-Jae;Ha, Deok-Cheon;Ryu, Keun-Ho;Baek, Seung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.1
    • /
    • pp.23-39
    • /
    • 2005
  • As developing satellite communication, the tracking range of the moving objects which move in local area is expanded to the whole world. However previous logistics management system is able to monitor freight which transporting in local area using mobile communication system. In this paper, we propose the reefer container management system that manages the location information and other related information such as temperature, humidity of container using the satellite system. The proposed system consists of three parts; data collector, satellite communication manager, reefer container information manager. And the proposed system uses the moving object index for managing the trajectory of container and tracing the location of container or vessel that is transporting the container, and supports various services such as reefer container and vessel tracking, container control and container statistics to logistic companies like shipper and forwarding agent. And the system can be increasing the quality of container transportation service to the shipper, and it makes the efficient management of reefer container to the shipping company.

  • PDF

Frequent Origin-Destination Sequence Pattern Analysis from Taxi Trajectories (택시 기종점 빈번 순차 패턴 분석)

  • Lee, Tae Young;Jeon, Seung Bae;Jeong, Myeong Hun;Choi, Yun Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.461-467
    • /
    • 2019
  • Advances in location-aware and IoT (Internet of Things) technology increase the rapid generation of massive movement data. Knowledge discovery from massive movement data helps us to understand the urban flow and traffic management. This paper proposes a method to analyze frequent origin-destination sequence patterns from irregular spatiotemporal taxi pick-up locations. The proposed method starts by conducting cluster analysis and then run a frequent sequence pattern analysis based on identified clusters as a base unit. The experimental data is Seoul taxi trajectory data between 7 a.m. and 9 a.m. during one week. The experimental results present that significant frequent sequence patterns occur within Gangnam. The significant frequent sequence patterns of different regions are identified between Gangnam and Seoul City Hall area. Further, this study uses administrative boundaries as a base unit. The results based on administrative boundaries fails to detect the frequent sequence patterns between different regions. The proposed method can be applied to decrease not only taxis' empty-loaded rate, but also improve urban flow management.

Improvement of turbid water prediction accuracy using sensor-based monitoring data in Imha Dam reservoir (센서 기반 모니터링 자료를 활용한 임하댐 저수지 탁수 예측 정확도 개선)

  • Kim, Jongmin;Lee, Sang Ung;Kwon, Siyoon;Chung, Se Woong;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.931-939
    • /
    • 2022
  • In Korea, about two-thirds of the precipitation is concentrated in the summer season, so the problem of turbidity in the summer flood season varies from year to year. Concentrated rainfall due to abnormal rainfall and extreme weather is on the rise. The inflow of turbidity caused a sudden increase in turbidity in the water, causing a problem of turbidity in the dam reservoir. In particular, in Korea, where rivers and dam reservoirs are used for most of the annual average water consumption, if turbidity problems are prolonged, social and environmental problems such as agriculture, industry, and aquatic ecosystems in downstream areas will occur. In order to cope with such turbidity prediction, research on turbidity modeling is being actively conducted. Flow rate, water temperature, and SS data are required to model turbid water. To this end, the national measurement network measures turbidity by measuring SS in rivers and dam reservoirs, but there is a limitation in that the data resolution is low due to insufficient facilities. However, there is an unmeasured period depending on each dam and weather conditions. As a sensor for measuring turbidity, there are Optical Backscatter Sensor (OBS) and YSI, and a sensor for measuring SS uses equipment such as Laser In-Situ Scattering and Transmissometry (LISST). However, in the case of such a high-tech sensor, there is a limit due to the stability of the equipment. Therefore, there is an unmeasured period through analysis based on the acquired flow rate, water temperature, SS, and turbidity data, so it is necessary to develop a relational expression to calculate the SS used for the input data. In this study, the AEM3D model used in the Water Resources Corporation SURIAN system was used to improve the accuracy of prediction of turbidity through the turbidity-SS relationship developed based on the measurement data near the dam outlet.

A study on an instantaneous angular velocity and torque fluctuation for marine diesel engine (선박용 디젤 기관의 순간 각속도와 토크 변동에 관한 연구)

  • Jung, Gyun-sik;Lee, Ji-woong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.722-728
    • /
    • 2015
  • The demand for shipboard energy management is expected to gradually increase based on ship energy efficiency management plans (SEEMPs), which have been in use since January 1, 2013. Therefore, the fuel consumption of the main engine, which occupies the greatest portion of the energy used, along with elements related to the engine power, should be strictly monitored. There are many different methods for indicating the engine power. However, this study performed an experiment to monitor the status of a ship's engine power in real time using an encoder and a proximate switch, which are economical to purchase and easy to install. In the experiment, the angular velocity during one cycle of a two-stroke low-speed engine was measured, and the measured data were converted to the torque fluctuation. The angular velocity during an abnormal firing condition in the cylinder was also measured, and the torque fluctuation as a result of a misfire was considered. The results were compared with sea trial data to determine the reliability. In this study, the status of the engine power was determined using the torque fluctuation of the main engine in an operating ship.

Development of Mobile Application for Ship Officers' Job Stress Measurement and Management (해기사 직무스트레스 측정 및 관리 모바일 애플리케이션 개발)

  • Yang, Dong-Bok;Kim, Joo-Sung;Kim, Deug-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.266-274
    • /
    • 2021
  • Ship officers are subject to excessive job stress, which has negative physical and psychological impacts and may adversely affect the smooth supply and demand of human resources. In this study, a mobile web application was developed as a tool for systematic job stress measurement and management of officers and verified through quality evaluation. Requirement analysis was performed by ship officers and staff in charge of human resources of shipping companies, and the results were reflected in the application configuration step. The application was designed according to the waterfall model, which is a traditional software development method, and functions were implemented using JSP and Spring Framework. Performance evaluation on the user interface, confirmed that proper input and output results were implemented, and the respondent results and the database were configured in the administrator interface. The results of evaluation questionnaires for quality evaluation of the interface based on ISO/IEC 9126-2 metric were significant 4.60 for the user interface and 4.65 for the administrator interface in a 5-point scale. In the future, it is necessary to conduct follow-up research on the development of data analysis system through utilization of the collected big-data sets.

A Study on Damage factor Analysis of Slope Anchor based on 3D Numerical Model Combining UAS Image and Terrestrial LiDAR (UAS 영상 및 지상 LiDAR 조합한 3D 수치모형 기반 비탈면 앵커의 손상인자 분석에 관한 연구)

  • Lee, Chul-Hee;Lee, Jong-Hyun;Kim, Dal-Joo;Kang, Joon-Oh;Kwon, Young-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.5-24
    • /
    • 2022
  • The current performance evaluation of slope anchors qualitatively determines the physical bonding between the anchor head and ground as well as cracks or breakage of the anchor head. However, such performance evaluation does not measure these primary factors quantitatively. Therefore, the time-dependent management of the anchors is almost impossible. This study is an evaluation of the 3D numerical model by SfM which combines UAS images with terrestrial LiDAR to collect numerical data on the damage factors. It also utilizes the data for the quantitative maintenance of the anchor system once it is installed on slopes. The UAS 3D model, which often shows relatively low precision in the z-coordinate for vertical objects such as slopes, is combined with terrestrial LiDAR scan data to improve the accuracy of the z-coordinate measurement. After validating the system, a field test is conducted with ten anchors installed on a slope with arbitrarily damaged heads. The damages (such as cracks, breakages, and rotational displacements) are detected and numerically evaluated through the orthogonal projection of the measurement system. The results show that the introduced system at the resolution of 8K can detect cracks less than 0.3 mm in any aperture with an error range of 0.05 mm. Also, the system can successfully detect the volume of the damaged part, showing that the maximum damage area of the anchor head was within 3% of the original design guideline. Originally, the ground adhesion to the anchor head, where the z-coordinate is highly relevant, was almost impossible to measure with the UAS 3D numerical model alone because of its blind spots. However, by applying the combined system, elevation differences between the anchor bottom and the irregular ground surface was identified so that the average value at 20 various locations was calculated for the ground adhesion. Additionally, rotation angle and displacement of the anchor head less than 1" were detected. From the observations, the validity of the 3D numerical model can obtain quantitative data on anchor damage. Such data collection can potentially create a database that could be used as a fundamental resource for quantitative anchor damage evaluation in the future.

A Study on the Axial Dependence of the Traffic Distribution Function (통항분포함수 축방향 의존성에 관한 연구)

  • Yoo, Sang-Lok;Gang, Sang-Geun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.179-187
    • /
    • 2015
  • The purpose of this study is to identify the aspect that the traffic distribution function changes, according to the direction of the datum line and the horizontal and vertical positions of the datum point applied when it is calculated. Targeting routes at the entrance of Mokpo Harbor, this study tested using AIS survey data of January 2013 the effects of the three variables-direction of the datum line(${\theta}$), horizontal position($\mathfrak{L}_H$) and vertical position($\mathfrak{L}_V$) on mean ($\bar{x}$) and standard deviation (${\delta}$). The test result showed that $\bar{x}$ and ${\delta}$ were changed according to the change of ${\theta}$, because the extracted sample data were changed according to ${\theta}$; and the changes of $\bar{x}$ and ${\delta}$ according to ${\theta}$ were drawn as the relation of the sine function' sum. In addition, it was found that setting up ${\theta}$ that the change value of ${\delta}$ becomes the least as the direction of the datum line was valid, to determine the optimum passage distribution function on complex waters with multiple branches of route. The result of this study is expected to be used as basic data to understand maritime traffic flow based on more quantified data of normal distribution and make decisions related to maritime traffic safety management.