• Title/Summary/Keyword: 해상디지털화

Search Result 116, Processing Time 0.022 seconds

환경분야를 위한 공간정보 분석 기술의 동향과 전망 - 지구통계학을 중심으로

  • Park, No-Uk
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.187-187
    • /
    • 2010
  • 공간자료를 다루는 일반적인 과정은 연구자의 정의에 따라 달라질 수 있지만, 일반적으로 자료 수집, 자료 구축, 분석 및 결과 도출의 일반적인 과학/공학적 분석 절차와 유사하다. 산업체의 관점에서 볼 때, 1990년대 초기 국가GIS 사업이 시작될때부터 현재까지는 공인된 자료 구축에 많은 주안점을 두어서 기존 아날로그 자료의 디지털화, 자료 가공, 데이터베이스 구축, 자료의 시각화 등의 일반적인 자료 구축 및 도시에 주안점을 두어왔다. 또한 다양한 공간해상도의 원격탐사 자료와 같이 다중 근원 자료의 이용이 빈번해짐에 따라 공간자료의 갱신 또한 중요한 부분을 차지하고 있다. 그러나, 공간자료를 다루는 일련의 과정이 궁극적으로는 특정 분야에서의 의사 결정보조자료의 제공 등을 지향한다고 간주할 때, "from data to information to knowledge"의 중간 혹은 최종 단계의 결과물을 산출하기 위한 적절한 분석 기술의 개발 및 적용 또한 중요한 부분을 차지한다. 공간분석을 별도의 학문분야로 간주하느냐 아니냐의 문제와는 상관없이, 최근 20년간 공간분석은 GIS 및 원격탐사 분야뿐만 아니라 기본적으로 공간자료를 다루는 많은 응용분야에서 공간자료의 이해와 부가정보의 생산을 위한 중요한 기술 분야로 간주되어 왔다. 공간분석의 여러 응용 분야중에서 환경분야에의 적용 연구는 또한 환경과학이라는 별도의 분야 뿐만 아니라, 기존 학문들인 지리학, 생태학, 지구과학, 사회학, 경제학, 도시 계획 등의 하위분야에서 중요한 방법론으로 자리 잡고 있다. 이 기술 세미나에서는 환경분야에 직간접적으로 활용이 가능한 공간정보 분석 기술의 동향을 지구통계학을 중심으로 소개하고자 한다. 국내에서 크리깅으로 대표되어온 지구통계학은 적용하는 학문 분야에 따라 보다 넓은 의미를 가지는 공간 통계학이라는 용어로 사용되고 있지만, 보다 학문적/기술적 의미로 살펴보면 공간분석의 특화된 분야로 간주할 수 있다. 1950년대 알려진 광상의 위치 정보를 이용하여 은둔 광상의 위치를 추정하기 위해 기본 개념이 소개된 이후에 수학적으로 이론이 1960년대 정립된 지구통계학은 많은 발전을 이루어 현재 다양한 분야에서 적용되고 있다. 그러나 외국과 달리 국내에서는 크리깅을 고급 내삽 기법으로만 간주하여 단순 주제도 작성에 제한적으로 사용하고 있다. 이 기술 세미나에서는 특정 학문분야에서 적용되기 보다는 일반적으로 통용될 수 있는 지구통계학의 기본 개념을 우선 소개한 후에, 국내외 학계에서의 환경주제도 제작과 관련된 주요 응용분야를 소개하고자 한다. 이후에 지구통계학이 적용될 수 있으면서, 다학제적 관점에서의 이슈가 될 수 있는 분야를 제시하고자 한다.

  • PDF

Speckle Noise Reduction and Image Quality Improvement in U-net-based Phase Holograms in BL-ASM (BL-ASM에서 U-net 기반 위상 홀로그램의 스펙클 노이즈 감소와 이미지 품질 향상)

  • Oh-Seung Nam;Ki-Chul Kwon;Jong-Rae Jeong;Kwon-Yeon Lee;Nam Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.5
    • /
    • pp.192-201
    • /
    • 2023
  • The band-limited angular spectrum method (BL-ASM) causes aliasing errors due to spatial frequency control problems. In this paper, a sampling interval adjustment technique for phase holograms and a technique for reducing speckle noise and improving image quality using a deep-learningbased U-net model are proposed. With the proposed technique, speckle noise is reduced by first calculating the sampling factor and controlling the spatial frequency by adjusting the sampling interval so that aliasing errors can be removed in a wide range of propagation. The next step is to improve the quality of the reconstructed image by learning the phase hologram to which the deep learning model is applied. In the S/W simulation of various sample images, it was confirmed that the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) were improved by 5% and 0.14% on average, compared with the existing BL-ASM.

Truncation Artifact Reduction Using Weighted Normalization Method in Prototype R/F Chest Digital Tomosynthesis (CDT) System (프로토타입 R/F 흉부 디지털 단층영상합성장치 시스템에서 잘림 아티팩트 감소를 위한 가중 정규화 접근법에 대한 연구)

  • Son, Junyoung;Choi, Sunghoon;Lee, Donghoon;Kim, Hee-Joung
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.111-118
    • /
    • 2019
  • Chest digital tomosynthesis has become a practical imaging modality because it can solve the problem of anatomy overlapping in conventional chest radiography. However, because of both limited scan angle and finite-size detector, a portion of chest cannot be represented in some or all of the projection. These bring a discontinuity in intensity across the field of view boundaries in the reconstructed slices, which we refer to as the truncation artifacts. The purpose of this study was to reduce truncation artifacts using a weighted normalization approach and to investigate the performance of this approach for our prototype chest digital tomosynthesis system. The system source-to-image distance was 1100 mm, and the center of rotation of X-ray source was located on 100 mm above the detector surface. After obtaining 41 projection views with ${\pm}20^{\circ}$ degrees, tomosynthesis slices were reconstructed with the filtered back projection algorithm. For quantitative evaluation, peak signal to noise ratio and structure similarity index values were evaluated after reconstructing reference image using simulation, and mean value of specific direction values was evaluated using real data. Simulation results showed that the peak signal to noise ratio and structure similarity index was improved respectively. In the case of the experimental results showed that the effect of artifact in the mean value of specific direction of the reconstructed image was reduced. In conclusion, the weighted normalization method improves the quality of image by reducing truncation artifacts. These results suggested that weighted normalization method could improve the image quality of chest digital tomosynthesis.

Development of flat panel digital x-ray detectorusing a-Se (비정질 셀레늄을 이용한 평판 Digital X선 검출기 개발)

  • Park, J.K.;Choi, J.Y.;Kang, S.S.;Cha, B.Y.;Jang, G.W.;Choi, J.Y.;Nam, S.H.
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.6 no.1
    • /
    • pp.24-30
    • /
    • 2003
  • Flat-panel detector(FPD) is the driving force for realizing the next gene ration of x-ray system. In this study, we developed amorphous selenium(a-Se) based flat-panel digital X-ray detector(DXD) for radiography. The prototype detector consists of an amorphous selenium layer and a thin-film transistor(TFT) array. Comparing to other papers1)-4), optimization of amorphous selenium and progress of evaporation were similar. The pixel pitch of fabricated detector was $139{\mu}m$, fill factor was 86%, and the size was 14"${\times}$8.5". Hand and test bar pattern images were acquired. A high modulation transfer function(MTF) factor was obtained: 58% at 3.0 lp/mm.

  • PDF

A low noise, wideband signal receiver for photoacoustic microscopy (광음향 현미경 영상을 위한 저잡음 광대역 수신 시스템)

  • Han, Wonkook;Moon, Ju-Young;Park, Sunghun;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.507-517
    • /
    • 2022
  • The PhotoAcoustic Microscopy (PAM) has been proved to be a useful tool for biological and medical applications due to its high spatial and contrast resolution. PAM is based on transmission of laser pulses and reception of PA signals. Since the strength of PA signals is generally low, not only are high-performance optical and acoustic modules required, but high-performance electronics for imaging are also particularly needed for high-quality PAM imaging. Most PAM systems are implemented with a combination of several pieces of equipment commercially available to receive, amplify, enhance, and digitize PA signals. To this end, PAM systems are inevitably bulky and not optimal because general purpose equipment is used. This paper reports a PA signal receiving system recently developed to attain the capability of improved Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of PAM images; the main module of this system is a low noise, wideband signal receiver that consists of two low-noise amplifiers, two variable gain amplifiers, analog filters, an Analog to Digital Converter (ADC), and control logic. From phantom imaging experiments, it was found that the developed system can improve SNR by 6.7 dB and CNR by 3 dB, compared to a combination of several pieces of commercially available equipment.

Design of a Low-Power 8-bit 1-MS/s CMOS Asynchronous SAR ADC for Sensor Node Applications (센서 노드 응용을 위한 저전력 8비트 1MS/s CMOS 비동기 축차근사형 ADC 설계)

  • Jihun Son;Minseok Kim;Jimin Cheon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.454-464
    • /
    • 2023
  • This paper proposes a low-power 8-bit asynchronous SAR ADC with a sampling rate of 1 MS/s for sensor node applications. The ADC uses bootstrapped switches to improve linearity and applies a VCM-based CDAC switching technique to reduce the power consumption and area of the DAC. Conventional synchronous SAR ADCs that operate in synchronization with an external clock suffer from high power consumption due to the use of a clock faster than the sampling rate, which can be overcome by using an asynchronous SAR ADC structure that handles internal comparisons in an asynchronous manner. In addition, the SAR logic is designed using dynamic logic circuits to reduce the large digital power consumption that occurs in low resolution ADC designs. The proposed ADC was simulated in a 180-nm CMOS process, and at a 1.8 V supply voltage and a sampling rate of 1 MS/s, it consumed 46.06 𝜇W of power, achieved an SNDR of 49.76 dB and an ENOB of 7.9738 bits, and obtained a FoM of 183.2 fJ/conv-step. The simulated DNL and INL are +0.186/-0.157 LSB and +0.111/-0.169 LSB.

GIS Vector Map Compression using Spatial Energy Compaction based on Bin Classification (빈 분류기반 공간에너지집중기법을 이용한 GIS 벡터맵 압축)

  • Jang, Bong-Joo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.3
    • /
    • pp.15-26
    • /
    • 2012
  • Recently, due to applicability increase of vector data based digital map for geographic information and evolution of geographic measurement techniques, large volumed GIS(geographic information service) services having high resolution and large volumed data are flowing actively. This paper proposed an efficient vector map compression technique using the SEC(spatial energy compaction) based on classified bins for the vector map having 1cm detail and hugh range. We encoded polygon and polyline that are the main objects to express geographic information in the vector map. First, we classified 3 types of bins and allocated the number of bits for each bin using adjacencies among the objects. and then about each classified bin, energy compaction and or pre-defined VLC(variable length coding) were performed according to characteristics of classified bins. Finally, for same target map, while a vector simplification algorithm had about 13%, compression ratio in 1m resolution we confirmed our method having more than 80% encoding efficiencies about original vector map in the 1cm resolution. Also it has not only higher compression ratio but also faster computing speed than present SEC based compression algorithm through experimental results. Moreover, our algorithm presented much more high performances about accuracy and computing power than vector approximation algorithm on same data volume sizes.

A Study on Implementation of SVG for ENC Applications (전자해도 활용을 위한 SVG 변환 연구)

  • Oh, Se-Woong;Park, Jong-Min;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.133-138
    • /
    • 2006
  • Electronic Navigational Charts(ENCs) are official nautical charts which are equivalent to paper charts with supplementary information. Although their main purpose is to be used for the safe navigation of ships, they also contain much information on coasts and seas which may be interesting to ordinary people. However, there is no easy way to access them because of therir specialized data format, access method and visualization. This paper proposes on implementation of SVG for the access and services of ENCs. SVG(Scalable Vector Graphic) makes it possible to make use of Vector graphics for servicing maps in basic internet browsing environment. Implement of SVG for ENC applications by this research is free of special server side GIS mapping system and client side extra technology. The implementation of SVG for ENC Applications can be summarized as follows: Firstly, SVG provides spatial information to possess searching engine to embody SVG map. Secondly, SVG can provide high-quality vector map graphics and interactive facility without special Internet GIS system. It makes it possible to use services with very low cost. Thirdly, SVG information service targeting on maritime transportation can be used as template, so it can be used dynamically any other purpose such as traffic management and vessel monitoring. Many good characteristics of SVG in mapping at computer screen and reusability of SVG document provide new era of visualization of marine geographic information.

  • PDF

A Study on Implementation of SVG for ENC Applications (전자해도 활용을 위한 SVG 변환 연구)

  • Oh, Se-Woong;Park, Jong-Min;Seo, Ki-Yeol;Suh, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1930-1936
    • /
    • 2007
  • Electronic Navigational Charts(ENCs) are official nautical charts which are equivalent to paper charts with supplementary information. Although their main purpose is to be used for the safe navigation of ships, they also contain much information on coasts and seas which may be interesting to ordinary people. However, there is no easy way to access them because of their specialized data format, access method and visualization. This paper proposes m implementation of SVG for the access and services of ENCs. SVG(Scalable Vector Graphic) makes it possible to make use of Vector graphics for map services in basic internet browsing environment. Implementation of SVG for ENC applications by this research is free of special server side GIS mapping system and client side extra technology. The Implementation of SVG for ENC Applications can be summarized as follows: Firstly, SVG provides spatial information to possess searching engine to embody SVG map. Secondly SVG can provide high-quality vector map graphics and interactive facility without special Internet GIS system. It makes it possible to use services with very low cost. Thirdly, SVG information service targeting on maritime transportation can be used as template, so it can be used dynamically any other purpose such as traffic management and vessel monitoring. Many good characteristics of SVG in mapping at computer screen and reusability of SVG document provide new era of visualization of marine geographic information.

A High-speed Automatic Mapping System Based on a Multi-sensor Micro UAV System (멀티센서 초소형 무인항공기 기반의 고속 자동 매핑 시스템)

  • Jeon, Euiik;Choi, Kyoungah;Lee, Impyeong
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.91-100
    • /
    • 2015
  • We developed a micro UAV based rapid mapping system that provides geospatial information of target areas in a rapid and automatic way. Users can operate the system easily although they are inexperienced in UAV operation and photogrammetric processes. For the aerial data acquisition, we constructed a micro UAV system mounted with a digital camera, a GPS/IMU, and a control board for the sensor integration and synchronization. We also developed a flight planning software and data processing software for the generation of geo-spatial information. The processing software operates automatically with a high speed to perform data quality control, image matching, georeferencing, and orthoimage generation. With the system, we have generated individual ortho-images within 30 minutes from 57 images of 3cm resolution acquired from a target area of $400m{\times}300m$.