• Title/Summary/Keyword: 해빈변형

Search Result 51, Processing Time 0.018 seconds

The Development of a Model to Predict Beach Evolution (해빈변형 예측 모델의 개발)

  • 안수한;김인철
    • Water for future
    • /
    • v.21 no.3
    • /
    • pp.299-307
    • /
    • 1988
  • A model is developed to predict the long-term beach evolution near the long groin considering the combined effects of variation of sea level, wave refraction and diffraction. A numerical solution for this problem is solved by considering the equation as a system subject to the boundary condition for longshore transport rate. One possible method is the centered Crank-Nicolson type implicit scheme. The results which ard obtained by applying this numerical model at Songdo beach, Pohang are as follows. Owing to the approximation used in the calculation of the refraction and diffraction coefficients, the discrepancy between the predicted and actual shoreline occurs to the interior of long groin. However, the shape of shoreline at the exterier of long groins agrees well.

  • PDF

Shoreline Change Model in Haeundae Beach (해운대 해빈의 해안선변형 예측 모형)

  • 박일흠;이종섭
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.50-62
    • /
    • 1989
  • Shoreline change of Haeundae beach was predicted by one-line model considering interaction of seawalls and longshore variation of wave height . Wave deformation was calculated by combined wave refraction-diffraction model . In this shoreline change model, empirical constants and offshore sediment transport rate are treated as calibration parameters, and the calculated results are in good agreement with the observed data.

  • PDF

Beach Deformation Mechanisms in Haeundae Beach (해운대(海雲臺) 해수욕장(海水浴場)의 해빈변형기구(海濱變形機構))

  • Lee, Jong Sup;Park, II Heum;Kim, Cha Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.595-605
    • /
    • 1994
  • The field observations. data analyses and numerical experiments are performed to investigate the short and long term beach deformation mechanisms in Haeundae beach. The schematic diagrams of deposition and erosion mechanism due to the attack of typhoons are described from the analysis on the beach widths and profiles. The short term beach deformation depends strongly on the characteristics of incident waves and wave-induced currents. The main incident wave and the calibration parameters of the shoreline change model are determined using the beach width data. Beacause the main incident wave approaches obliquly from the SE direction, the net westward longshore sediment transport occurs. Therefore the unbalance of longshore sediment budget in the east of the beach where the sediment source dose not exist causes a beach erosion. On the other hand, the deposited sand in the west is lost offshore by the storm wave action.

  • PDF

Effects of Coastal Groundwater Level on Beach Deformation (해안지하수위가 해빈변형에 미치는 영향)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.581-589
    • /
    • 2019
  • In order to understand the characteristics of beach deformation, in this study, numerical simulations were conducted using a 3-D hydro-morphodynamic model (HYMO-WASS-3D) to analyze the characteristics of beach deformation due to the coastal groundwater levels. HYMO-WASS-3D directly analyzed the nonlinear interaction between the hydrodynamic and morphodynamic processes in the coastal area. The simulation results of HYMO-WASS-3D showed good agreement with the experimental results on the changes in the profile of the beach in the surf and swash zones. Then, numerical simulations were conducted to examine the characteristics of beach deformation due to the variation of the level of the coastal groundwater. As a result, the beach profiles were examined in relation to the wave breaking in the surf zone and the wave uprush and backwash in the swash zone due to the differences in the water levels. This paper also discussed the temporal and spatial distributions of the velocities, vorticities, and suspended sediments in the surf and swash zones with various levels of the coastal groundwater.

Monitoring of Coastal Erosion and Accretion Changes using Sea Walls Surveying (호안측량에 의한 해안침식 및 퇴적 변화량 모니터링)

  • Lee, Hyung-Seok;Um, Dae-Yong;Jang, Eun-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.186-195
    • /
    • 2005
  • Topography of beach line is keeping stability for several years, their soil values have been maintained in balances. Install of coastal structures have caused deformation for beaches and acted as a function to structures. Therefore, quantitative prediction of beaches topography according to structure install is required to prevent the beaches deformation and progress proper coastal preservation work. In this study, we analyzed coastal changes caused by erosion and accretion according to development and drew up a cross-section to share 8 stations using coordinates and depth surveying in groin of Soheuksan island port. Elevation distribution and changes by observation period is calculated -0.30m~+0.20m after comparing results of five months in October 7, 2004 surveying results and fell into insignificance. We thinks periodic observation of coastal erosion and accretion take place for the season and long-term coastal changes in beaches width is analyzed.

  • PDF

Numerical Simulation of Beach Profile Changes (해빈 종단면 변형의 수치모의)

  • Cheon, Se-Hyeon;Ahn, Kyung-Mo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2008
  • Several numerical models for predicting beach profile changes have been developed by many researchers. Many of the earlier models are known to simulate the erosional profiles with the formation of offshore bar. However, most of the models don't have proper mechanism to incorporate the recovery process of the eroded profiles after a storm and can not simulate the beach accretion with acceptable accuracy. In order to overcome these shortcomings, we propose a new numerical model which has new features to simulate the accretional phase of beach recovery process after storm including such as redistribution of suspended sand particles near the breaking point. The simulation results of the proposed model were compared with LWT (Large Wave Tank) experiments performed at CRIEPI (Central Research Institute of Electric Power Industry in Japan) and CE (the Us Army Corps of Engineers) and it was shown to have performed better compared to SBEACH (Storm-induced BEAch CHange).