• Title/Summary/Keyword: 해면파

Search Result 39, Processing Time 0.032 seconds

A Study on Phenomena of Sea Propagation Considering Surface Wave (표면파 성분을 고려한 해면전파 현상에 관한 연구)

  • 서덕수;이민수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.376-383
    • /
    • 1996
  • In general, the electromagnetic field analysis of a vertical dipole mainly deals with the space. wave. But when only the space wave is considered, as a receiving point is close to the surface of medium, the receiving electric field strength is rapidly decreased. In this paper, to solve this problem, we considered both the surface wave and the space wave contribution. When the vector potential is used with the angular spectrum transformation method, the space wave and the surface wave are included in the final electric field expression. By using this final electric field expression, the effect of the surface wave is analyzed through simulations and the factors having effect on a propagation phenomenon of sea surface are studied in detail. Also, the justification of the theoretical formula was proved by comparing theoretical values with measuring ones at 880. 2MHz which is the frequency of mobile communication.

  • PDF

The Performance Comparison of Digital Modulations for Underwater Data Communication (수중 데이터 통신을 위한 변조방식의 성능 비교)

  • Son Geun-young;Ro Yong-ju;Yoon Jong-rak
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.429-432
    • /
    • 2000
  • 수중에서 AUV신호나 화상데이터의 정확한 고속 전송 등을 위해 수중 데이터 통신에 대한 많은 연구가 진행되어 왔다. 수중 데이터 통신에서 잔향과 배경 잡음 등의 해양 환경 특성을 극복하는 것은 신뢰성 있는 통신 환경을 이룩하는데 중요하다. 특히 해면과 해저로 이루어진 천해 환경에서 해면과 해저 반사파에 의한 영향은 수중 데이터 통신의 성능을 좌우하는 중요한 요소 중의 하나로 알려져 있다. 이러한 환경적 영향을 최소화하여 높은 성능의 통신 환경을 제공하기 위해 다중경로의 영향을 적게 받는 변조방식을 선택하는 것이다. 수중 데이터 통신에서 일반적으로 사용되는 변조방식은 FSK, PSK, DPSK 등이 있다. 본 연구에서는 해면$\cdot$해저로 이루어진 해양 통신 채널에서 세 가지 변조방식의 성능을 수치모의실험을 통하여 비교$\cdot$분석하였다. 수치모의실험에서 해면 해저로 이루어진 천해의 해양 통신 채널은 음원 영상법을 적용하여 구성하였으며 각 변조방식의 성능은 BER(Bit Error Ratio)로 나타내었다.

  • PDF

A Wind Generated Wave Prediction System in a Finite Depth Sea (바람에 의해 생성된 파도의 예측과 깊이변화의 영향)

  • Kwon, Sun. H.
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.17-25
    • /
    • 1989
  • 해양에서 바람에 의해 생성된 파도를 예측하는 모델을 제시하고 이 모델의 성질을 무한 해면에서 나타내 보이고 마지막으로 파의 이송과 깊이의 영향에 관한 결과를 유한폭의 해상에서 계산해서 비교 가능한 자료와 비교해 보았다.

  • PDF

Numerical Analysis of Hydrodynamic Forces on a Floating Body in Two-layer Fluids (밀도가 상이한 두 유체층에서 부유체 동유체력 특성의 수치적 해석)

  • Kim, Mi-Geun;Koo, Weon-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.369-376
    • /
    • 2010
  • In this study, a radiation and a diffraction problems of a floating body in two-layer fluids were solved by the Numerical Wave Tank(NWT) technique in the frequency domain. In two-layer fluids, two different wave modes exist and the hydrodynamic coefficients can be obtained separately for each mode. The two-domain Boundary Element Method(BEM) in the potential fluid using the whole-domain matrix scheme was used to investigate the characteristics of wave forces, added mass and damping coefficients. The effects of the ratio of density and water depth in the lower domain were also evaluated and compared with given references.

Numerical Analysis of Internal Waves in Two-layer Fluids by a Two-domain Boundary Element Method (Two-domain 경계 요소법을 이용한 해양 내부파의 수치적 재현)

  • Koo, Weon-Cheol;Kim, Mi-Geun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.6-11
    • /
    • 2009
  • In this study, the internal waves in two-density layered fluids were analyzed using the Numerical Wave Tank (NWT) technique in the frequency domain. The NWT is based on a two-domain Boundary Element Method with the potential fluids using the whole-domain matrix scheme. From the mathematical solution of the two-domain boundary integral equation, two different wave modes could be classified: a surface wave mode and an internal wave mode, and each mode were shown to have a wave number determined by a respective dispersion relation. The magnitudes of the internal waves against surface waves were investigated for various fluid densities and water depths. The calculated results are compared with available theoretical data.

Prediction of Significant Waves in Yellow Sea (서해안 심해설계파의 산정)

  • 유동훈;조종환;정진섭
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.34-37
    • /
    • 1996
  • 해상풍에 의한 파랑의 발달을 다룬 모델은 1940년대 이후 실측파랑 및 기상자료로부터 이론에 기초한 경험식이 제시되었다. 이러한 경험식들은 실제의 불규칙한 해면상태를 유의파로 대표하여 유의파의 파고 및 주기를 풍속, 취송거리 및 취송시간의 함수로 나타낸 것이다. 널리 쓰이고 있는 심해에서의 모델은 SMB법과 Wilson법이 있으며 일정한 바람이 연속적으로 불어오는 안정된 정상상태에서는 SMB법이, 그리고 풍역이 시간적 공간적으로 변화가 큰 경우에는 Wilson법이 적용되고 있다. (중략)

  • PDF

Analysis of a fixed source-to-receiver underwater acoustic communication channel parameters in shallow water (송수신기가 고정된 천해 수중음향통신 채널 매개변수 해석)

  • Bae, Minja;Park, Jihyun;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.494-510
    • /
    • 2019
  • Underwater acoustic communication channel parameters consist of impulse response, delay spreading, scattering function, coherence bandwidth, frequency selective fading, coherence time and time variant magnitude fading statistics on which communication system modem and channel coding are designed. These parameters are influenced by sound velocity profile, platform motion and sea surface roughness in given acoustical oceanography condition. In this paper, channel model based on phasor, channel simulator, measurement and analysis method of channel parameters are given in a fixed source-to-receiver system and the parameters are analyzed using shallow water experimental data. For two different source-to-receiver ranges of 300 m and 600 m, the parameters are characterized by three multipaths such as a direct, a surface reflection path with time variant scattering and a bottom reflection path. The results present a channel modelling method of a fixed source source-to-receiver system, channel parameters measurement and analysis methods and a system design and performance assessment method in shallow water.

Periodic characteristics of long period tidal current by variation of the tide deformation around the Yeomha Waterway (염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성)

  • Song, Yong-Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2011
  • The mass transport is very complicated at the area which has the macro tide and complex geometry such as Gyeonggi bay. Especially, the long period current has a strong influence on the estuarine ecosystem and the long-term distribution of substances. The long period current is caused by several external forcing, whose unique characteristic varies spatially and temporally. The variation characteristics of long period current is analysed and its generation mechanism is studied. The tidal nonlinear constituents such as overtide and compound tide are generated due to nonlinear interaction and it causes mean sea level setup. The tidal wave propagating up into estuary is transformed rapidly by decrease of cross-sectional area and depth. Therefore the mean sea level is getting rise toward upriver. The high and low tide level is similar between down-river(Incheon) and up-river(Ganghwa) during neap tide when the tidal deformation is decreased. The tidal phase difference between two tidal stations causes a periodic fluctuation of sea level difference. The low water level of Ganghwa station during spring tide does not descend under EL(-)2.5 m, but the low water level of Incheon fall down under EL(-)4.0 m. The variation of tidal range and its sea level are increased during spring tide. It is found that the long period current $M_{sf}$ is quite similar to that of sea level difference between the two tidal stations. It means that the sea surface inclination caused by the spatial difference of tidal deformation is important forcing for the generation of long period current.

Wave Simulation for the Optimum Design of Jangjeon Harbour (장전항 최적 설계를 위한 정온도 해석)

  • Hong Keyyong;Yang Chankyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.49-59
    • /
    • 2000
  • Wave distribution in Jangjeon Harbour is numerically simulated for an optimum design of the harbour facilities. A deep-water design wave is estimated based on stochastic extreme wave analysis of wind data in the vicinity of the harbour, and it is applied to the boundary condition at open sea. Boussinesq wave theory that includes effects of frequency dispersion and nonlinearity is employed for the wave simulation. The porosity and sponge layer are adapted at beach to depict partial reflection and complete absorption of waves, respectively. The design wave for breakwater is computed in global domain with coarse grids and the wave distribution inside of wharf is simulated in local domain with fine grids.

  • PDF

Study on Density Discontinuous Layers of the Kunsan Basin in the Yellow Sea Using Satellite Altimetry Gravity Data (인공위성 해면고도계 중력자료를 이용한 황해 군산분지의 밀도 불연속면에 대한 연구)

  • Kim, Kyong-O;Oh, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.751-759
    • /
    • 2007
  • To better understand the subsurface geological structure of the Kunsan Basin in the Yellow Sea, the mean depths of the density discontinuous layers (DDLs) of the Kunsan Basin were calculated by power spectrum analysis using satellite altimetry gravity data. The calculated mean depths of DDLs were -1.1km, -3.4km, -9.1km and -31.0km. The mean depth of -1.1km DDL was interpreted as regional unconformity shown in about 1 second in two way travel time (TWTT) in the seismic reflection profiles, and the mean depth of -3.4km DDL was also interpreted as top of the acoustic basement in the seismic reflection profiles. Comparing with well data, seismic reflection profiles and regional geology in the study area, the mean depth of -9.1km DDL was interpreted as top of the igneous origin basement. This means that the acoustic basement of the study area is composed mainly of sediments which are disregarded in previous study. The mean depth of -31.0km DDL was interpreted as the Moho discontinuity because this mean depth is similar to one of the normal continental crust thickness. The detection of top of the igneous origin basement suggests that oil gas potential analysis in Kunsan Basin needs to be extended to the deeper part of sediments (acoustic basement).