• Title/Summary/Keyword: 해면수온

Search Result 36, Processing Time 0.022 seconds

Temporal and Spatial Variations of Sea Surface Temperature in Jinju Bay in the South Coast of Korea (진주만 해역 수온의 시공간적 변동 특성)

  • Choo, Hyo-Sang;Yoon, Eun-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.315-326
    • /
    • 2015
  • Temporal and spatial variations of surface water temperature in Jinju Bay for the period of 2010~2011 were studied using the data from temperature monitoring buoys deployed at 17 stations in the south coast of Korea. Water temperature shows the maximum late in January and the minimum early in August. Seasonal variation of water temperatures at the north part of the bay is smaller than the middle and the south. In summer, the lowest and the highest of maximum water temperature are distributed around Jijok Channel which is located at the south of the bay. The fluctuations of water temperatures at Noryang and Daebang Channel are smaller than others because of vertical mixing caused by passage of strong tidal currents. Wind and strong currents affect on the stratification of the surface water layer near Daebang Channel. High temperatures come in frequently around the north area when eastward constant flows appear at neap tide as blowing westerly in the springtime at Noryang Channel. Spectral analyses of temperature records show significant peaks at 7~20 day periods at Noryang Channel, 7~20 day and semidiurnal at the west coast of Changsun Island and Jijok Channel and 7~20 day and diurnal at the middle of the bay. Temperature fluctuation at Noryang Channel shows high coherence and has leading phase with those at other stations in the bay. However, the phase of temperature fluctuation at Noryang Channel falls behind that at Daebang Channel. Daebang Channel has an influence on the temperature fluctuation only at the west and middle part of the bay. Cross-correlation analyses for the temperature fluctuation show that Jinju Bay could be classified into six areas; Noryang Channel, the area of convergence and divergence at the north, Daebang Channel, the west coast of Changsun Island, the mixing area at the middle of the bay and the south inside of the bay, respectively.

Temporal and Spatial Variations of Temperature and Salinity around Ganjeol Point in the Southeast Coast of Korea (한국 남동해 간절곶 주변해역의 열염구조와 시공간적 변동 특성)

  • Choo, Hyo-Sang;Jang, Duck-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.474-485
    • /
    • 2014
  • Temporal and spatial variations of temperature and salinity around Ganjeol Point during January, April, August and November 2011 were studied using the data from CTD observations and temperature monitoring buoys deployed at 20 stations in the southeast coast of Korea. Temperature and salinity were nearly homogeneous through the whole depth by mixing of the seawater in spring and winter related to the sea surface cooling. Stratification induced by the river runoff and the bottom cold water was clear in summer. In autumn, sea water had vertical mixing initiated from surface layer and weak stratification at the middle and bottom layers. Low temperature and high salinity emerged throughout the year near Ganjeol Point, which inferred from turbulent mixing and upwelling by its topographical effect. Major periods of 1/4~1.4 day temperature fluctuations were recorded for the most part of the stations. According to the cross spectral density analysis, high coherence and small time lag for temperature fluctuation between layers were shown at Ganjeol Point. However, those features at the northen area of Hoeya river were opposed to Ganjeol Point. From analyses, thermohaline structure and its fluctuation around Ganjeol Point were characterized into those three parts, the south of Ganjeol Point, Ganjeol Point and the north of Ganjeol Point.

Argo Project: On the Distribution Prediction of Drifting Argo Floats (Argo프로젝트: Argo플로트 분포 예측)

  • Yang Chan-Su;Ishida Akio
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.22-29
    • /
    • 2004
  • An international project, known as Argo, for collecting data on temperature, salinity and velocity of currents in the world's oceans, has been started in the year 2000 and the full Argo array of approximately 3000 floats will be deployed by 2006. 18 countries deployed 1,023 floats, which are operating in the ocean of the world as of December 2003. In the present study, we tried to predict float distribution and a rate of drifting ashore of the floats after their termination based upon a product of the ocean general circulation model of JAMSTEC (Japan Marine Science and Technology Center). We first evaluated reliability of the model prodilct quantitatively by comparing trajectories of surface buoys of WOCE Surface Velocity Program (SVP) and those predicted by the model surface current field. It is found that the model is acceptable for practical application to deploy floats and to estimate those trajectories. 653 particles at 3-degree spacing are used to investigate the ratio of floats drifted ashore, given that during the first 4 years floats cycle between the surface and 2000m for 10 days and then floats are on just the surface for 100 years. The simulation indicates that about 29% of deployed floats will be drifted ashore within 100-year.

  • PDF

Evidence of Outbreak in 2000m of water Mass in the Kuroshio Extension (일본 동북 연안 쿠로시오 속류 Warm Water Break의 발견)

  • 양찬수
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.423-428
    • /
    • 2004
  • 쿠로시오는 일본열도 동안을 북상하면서, 조오반 앞바다에서 동쪽으로 이동하게 된다. 이 해역에서 오야시오에 기인한 냉수괴의 배치에 따라 쿠로시오의 북상범위 및 유로(여기서는 구불구불한 흐름의 형상)가 크게 바뀌게 된다. 본 연구에서는 쿠로시오 속류가 진행방향과 반대되는 방향으로 짧은 주기를 갖고 발생한 ‘warm water break’ 을 발견하였다. 10일 이하의 주기를 갖는 것으로 추정되는 이 event을 상세히 이해하기 위하여 다음의 자료를 사용하였다. 1) SeaWiFS chlorophyll-a 영상, 2) AVHRR-SST 영상, 3)Topex/poseidon과 ERS-2의 해면고도정보, 4) 관측데이터: ADCP와 수온과 염분의 연직분포. 이 연구결과를 통해, 쿠로시오의 이벤트 ‘warm water break’을 확인하였으며, 이 현상은 10일 이하의 짧은 주기를 갖고 수심 2000m 정도까지 영향을 미치는 것으로 판단되었다.

  • PDF

Predictability of Sea Surface Temperature in the Northwestern Pacific simulated by an Ocean Mid-range Prediction System (OMIDAS): Seasonal Difference (북서태평양 중기해양예측모형(OMIDAS) 해면수온 예측성능: 계절적인 차이)

  • Jung, Heeseok;Kim, Yong Sun;Shin, Ho-Jeong;Jang, Chan Joo
    • Ocean and Polar Research
    • /
    • v.43 no.2
    • /
    • pp.53-63
    • /
    • 2021
  • Changes in a marine environment have a broad socioeconomic implication on fisheries and their relevant industries so that there has been a growing demand for the medium-range (months to years) prediction of the marine environment Using a medium-range ocean prediction model (Ocean Mid-range prediction System, OMIDAS) for the northwest Pacific, this study attempted to assess seasonal difference in the mid-range predictability of the sea surface temperature (SST), focusing on the Korea seas characterized as a complex marine system. A three-month re-forecast experiment was conducted for each of the four seasons in 2016 starting from January, forced with Climate Forecast System version 2 (CFSv2) forecast data. The assessment using relative root-mean-square-error was taken for the last month SST of each experiment. Compared to the CFSv2, the OMIDAS revealed a better prediction skill for the Korea seas SST, particularly in the Yellow sea mainly due to a more realistic representation of the topography and current systems. Seasonally, the OMIDAS showed better predictability in the warm seasons (spring and summer) than in the cold seasons (fall and winter), suggesting seasonal dependency in predictability of the Korea seas. In addition, the mid-range predictability for the Korea seas significantly varies depending on regions: the predictability was higher in the East Sea than in the Yellow Sea. The improvement in the seasonal predictability for the Korea seas by OMIDAS highlights the importance of a regional ocean modeling system for a medium-range marine prediction.

Relation between the Heat Budget and the Cold Water in the Yellow Sea in Winter (동계의 열수지 황해냉수와의 관계)

  • Han, Young-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 1978
  • To study the fluctuation of cold water in the East China Sea in summer heat budget of the Yellow Sea in winter was analysed based on the oceanographic and meteorological data compiled from 1951 to 1974. The maintain value of insolation was observed in December($160{\sim}190ly/day$), while the maximum in February ($250{\sim}260ly/day$). The range of the annual variation was found to be less than 50 ly/day. The value of the radiation term ($Q_s-Q_r-Q_h$) was remarkably small (mean 20 ly/day) in winter. It was negative value in December and January, and a positive value in February. The minimum total heat exchange from the sea ($Q_({h+c}$) was found value (471 ly/day) in February 1962, and the maximum (882 ly/day) in January 1963. The annual total heat exchange was minimum (588 ly/day) in 1962, and maximum (716 ly/day) in 1968. If the average deviation of mean water temperature at 50m depth layer were assumed to be the horizontal index ($C_h$) of colder water, $C_h$ is $C_h=\frac{{\Sigma}\limit_i\;A_i\;T_i}{{\Sigma}\limit_i\;A_i}$ where $A_i$ denotes the area of isothermal region and $T_i$ the value of deviation from mean sea water temperature. The vertical index ($C_v$) of cold water can be expressed similarly. Consequently the total index (C) of cold water equals to the sum of the two components, i.e. $C=C_h$$C_v$. Taking the deviation of mean sea surface temperature(T'w) in the third ten-day of Novembers in the Yellow Sea as the value of the initial condition, the following expressions are deduced : $C-T'w=32.06 - 0.049$ $\;Q_T$ $C_h-T'w/2=12.20-0.019\;Q_T$ $C_v-T'w/2=18.07-0.027\;Q_T$ where $Q_T$ denotes the total heat exchange of the sea. The correlation coefficients of these regression equations were found to be greater than 0.9. Heat budget was 588 ly/day in winter, and minimum water temperature of cold water was $18^{\circ}C$ in summer of 1962. The isotherm of $23^{\circ}C$ extended narrowly to southward up to $29^{\circ}N$ in summer. However, heat budget was 716 ly/day, and minimum water temperature of cold water was $12^{\circ}C$ in summer of 1968. The isotherm of $23^{\circ}C$ extended widely to southward up to $28^{\circ}30'N$ in summer. As a result of the present study, it may be concluded that the fluctuation of cold water of the East China Sea in summer can be predicted by the calculation of heat budget of the Yellow Sea in winter.

  • PDF

Interannual Variabilities of Sea Surface Temperature and Sea Level Anomaly related to ENSO in the Tropical and North Pacific Ocean System (열대 및 북태평양에서 ENSO와 관련된 표층수온과 해면고도의 경년 변동성)

  • Kim, Eung;Jeon, Dong-Chull
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.313-324
    • /
    • 2008
  • In order to understand the variation of ENSO-related oceanic environments in the tropical and North Pacific Ocean, spatio-temporal variations of sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) are analyzed from distributions of complex empirical orthogonal functions (CEOF). Correlations among warm pool variation, southern oscillation index, and ocean surface currents were also examined with respect to interannual variability of the warm pool in western tropical Pacific. Spatio-temporal distributions of the first CEOF modes for SSTA and SSHA indicate that their variabilities are associated with ENSO events, which have a variance over 30% in the North Pacific. The primary reasons for their variabilities are different; SST is predominantly influenced by the change of barrier layer thickness, while SSH fluctuates with the same phase as propagation of an ENSO episode in the zonal direction. Horizontal boundary of warm pool area, which normally centered around $149^{\circ}E$ in the tropics, seemed to be expanded to the middle and eastern tropical regions by strong zonal currents through the mature phase of an ENSO episode.

Empirical Orthogonal Function Analysis of Surface Pressure, Sea Surface Temperature and Winds over the East Sea of the Korea (Japan Sea) (한국 동해에서의 해면기압, 해수면온도와 해상풍의 경험적 직교함수 분석)

  • NA Jung-Yul;HAN Snag-Kyu;SEO Jang-Won;NOH Yi-Gn;KANG In-Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.188-202
    • /
    • 1997
  • The seasonal variability of the sea surface winds over the last Sea of Korea (Japan Sea) is investigated by means of empirical orthogonal function (EOF) analysis. The combined representation of fields of three climatic variables by empirical orthogonal functions is discussed. The eigenvectors are derived from daily sea level pressure, wind speed and 10-day mean sea surface temperature (SST) during 15 years $(1978\~1992)$. The spatial patterns of the mean pressure are characterized by the high pressure in the western part and the low pressure in the eastern part. The spatial distribution of the standard deviation (SD) of pressure are characterized by max SD of 6.6 mb near the Vladivostok, and minima along the coast of the Japan. In Vladivostok, the maxima of SD of SST and south-north wind (WV) were also occurred. The representation of fields of individual meteorological variables by EOF shows that the first mode of the west-east wind (WU) explain over $47.3\%$ of the variance and the second mode of WU represents $30\%$. Especially, the first mode of the WV explain $70.9\%$ of the variance and their time series coefficients show 1-cpy, 0.5-cpy frequency spectrum. The spatial distribution of the first mode eigenvectors of SST are characterized by maximum near Vladivostok. The combined representation of fields of several variables (pressure, wind, SST) reveals that the first mode magnitudes of the variance of the combined eigenvectors (WU-PR) are increased. By means of this result, the 1-year peak and the 6-months peak are remarkable. In the three combined patterns (wind, pressure, SST), the second mode of the eigenvector (wind) is affected by the SST. Their time coefficients of the first mode show noticeable 1-year peak. The spectral analysis of the second mode shows broad seasonal signal with the period of 4-months and a significant peak of variability at 3-month period.

  • PDF

Reproduction of Ocean Circulation around Korean Peninsula by using a Mesoscale Ocean Circulation Model (중규모 해양모형을 이용한 한반도 주변 해역 해양순환 재현)

  • Lee, Hae-Jin;Ahn, Joong-Bae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.186-194
    • /
    • 2000
  • In this study, the oceanic responses to given atmospheric boundary conditions are investigated using a mesoscale ocean circulation model. The numerical experiments are divided into two parts: One is, so called, spin-up experiment and the other is reproduction experiment. The spin-up experiment simulates climatic state of ocean by integrating the ocean model with upper boundary conditions of the monthly mean atmospheric climate data. In the reproduction experiment, for the reproduction of major oceanic changes around Korean Peninsula during the period of 1980-1998 (19 years), the model has been integrated under the boundary condition of the 19year monthly mean atmosphere data. The spined-up state of ocean generated from the spin-up experiment is assigned to the initial boundary condition of the reproduction experiment. In the spin-up experiment, the model properly simulates the major features of circulation structure around Korean Peninsula; such as separation of East Korean Warm Current (EKWC), formation of the polar front, cold water band associated with the small scale eddies in the East Sea, the formation of front along west coast, and the seasonal variation of circulation pattern caused by changing upwind current in the West Sea. In the reproduction experiment, the model has shown the interannual sea surface temperature variations and a warming trend of about 0.5$^{\circ}$C during the period around Korean Peninsula, as in the case of the observation. Therefore, it is concluded that the model is capable of simulating not only the mean states but also the variabilities of ocean under the given atmosphere boundary conditions.

  • PDF

Determining Spatial and Temporal Variations of Surface Particulate Organic Carbon (POC) using in situ Measurements and Remote Sensing Data in the Northeastern Gulf of Mexico during El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ (현장관측 및 원격탐사 자료를 이용한 북동 멕시코 만에서 El $Ni\tilde{n}o$와 La $Ni\tilde{n}a$ 기간 동안 표층 입자성 유기탄소의 시/공간적 변화 연구)

  • Son, Young-Baek;Gardner, Wilford D.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.51-61
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration was measured in the Northeastern Gulf of Mexico on 9 cruises from November 1997 to August 2000 to investigate the seasonal and spatial variability related to synchronous remote sensing data (Sea-viewing Wide Field-of-view Sensor (SeaWiFS), sea surface temperature (SST), sea surface height anomaly (SSHA), and sea surface wind (SSW)) and recorded river discharge data. Surface POC concentrations have higher values (>100 $mg/m^3$) on the inner shelf and near the Mississippi Delta, and decrease across the shelf and slope. The inter-annual variations of surface POC concentrations are relatively higher during 1997 and 1998 (El Nino) than during 1999 and 2000 (La Nina) in the study area. This phenomenon is directly related to the output of Mississippi River and other major rivers, which associated with global climate change such as ENSO events. Although highest river runoff into the northern Gulf of Mexico Coast occurs in early spring and lowest flow in late summer and fall, wide-range POC plumes are observed during the summer cruises and lower concentrations and narrow dispersion of POC during the spring and fall cruises. During the summer seasons, the river discharge remarkably decreases compared to the spring, but increasing temperature causes strong stratification of the water column and increasing buoyancy in near-surface waters. Low-density plumes containing higher POC concentrations extend out over the shelf and slope with spatial patterns and controlled by the Loop Current and eddies, which dominate offshore circulation. Although river discharge is normal or abnormal during the spring and fall seasons, increasing wind stress and decreasing temperature cause vertical mixing, with higher surface POC concentrations confined to the inner shelf.