• Title/Summary/Keyword: 해령

Search Result 45, Processing Time 0.034 seconds

Tectonic features along the South Scotia Ridge, Antarctica (남극해 남스코시아 해령 주변의 지체구조)

  • Hong, Jong-Kuk;Jin, Young-Keun;Lee, Joo-Han;Nam, Sang-Heon;Park, Min-Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.139-144
    • /
    • 2005
  • Multichannel seismic survey has conducied along the South Scotia Ridge which is located in the northern part of Weddell sea, Antarctic sea, The South Scotia Ridge is part of continental crust extended from Antarctic Peninsula. It borders on Oceanic plates, the Scotia sea plate and Powell basin. Transtensional tectonics along the sinistral transform fault plate boundary led to the creation of the present tectonic geomorphology of the South Scotia Ridge. The fan-shaped deposits with angular unconformities in the central depression is interpreted as a divergent tectonic movement along the ridge.

  • PDF

Tectonic Features along the South Scotia Ridge, Antarctica (남극해 남스코시아 해령 주변의 지체구조)

  • Hong, Jong-Kuk;Jin, Young-Keun;Lee, Joo-Han;Nam, Sang-Heon;Park, Min-Kyu
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.215-219
    • /
    • 2005
  • Multichannel seismic survey has conducted along the South Scotia Ridge which is located in the northern part of Weddell sea, Antarctic sea. The South Scotia Ridge is part of continental crust extended from Antarctic Peninsula. It borders on Oceanic plates, the Scotia sea plate and Powell basin. Transtensional tectonics along the sinistral transform fault plate boundary led to the creation of the present tectonic geomorphology of the South Scotia Ridge. The fan-shaped deposits with angular unconformities in the central depression is interpreted as a divergent tectonic movement along the ridge.

  • PDF

A New Tectonic Model of Cretaceous East Asia: Role of Mantle Plume (백악기 동아시아 신지구조 모델: 맨틀 플룸의 역할)

  • Lee, Changyeol
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.337-345
    • /
    • 2019
  • The hypothesis of ridge subduction which explains the Cretaceous igneous activities in East Asia including China, Korea and Japan, has been widely accepted in the society. Especially, the hypothesis explains the southwest-to-northeast migration of the Cretaceous adakite emergence in Southwest Japan. However, the hypothesis has several issues because the geochemical analyses and plate reconstruction model are not consistent with the consequences of the ridge subduction. To resolve the issues, a new hypothesis of the plume-continent and plume-slab interaction is suggested, which explains the igneous activities during the Cretaceous. In this review, I briefly introduce the two hypotheses and suggest an additional future study to prove the new hypothesis.

New Approach on the Extinction of Spreading at the Phoenix Ridge, Antarctica (남극 피닉스 해령 확장작용 소멸시기에 대한 새로운 고찰)

  • Choe Won Hie;Lee Jong Ik;Lee Mi Jung;Hur Soon Do;Jin Yaung Keun
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • K-Ar ages have been determined for the submarine basalts dredged from the P2 and P3 segments of the Phoenix Ridge, Drake Passage, Antarctica, for better understanding on the extinction of seafloor spreading. At the P3 segment, the K-Ar ages of the rifted ridge basalts are 3.5-6.4 Ma, and those for the axial seamount basalts are 1.5-3.1 Ma. The K-Ar ages for the basalts at the rifted ridge and axial central high in the P2 segment are 2.1 and 1.4-1.9 Ma, respectively. We suggest that the extinction of seafloor spreading at the P3 and P2 segments occurred at 3.3 and 2.0 Ma, respectively, on the basis of ridge structure and formation time of basalts. This result favors a stepwise extinction model rather than a simultaneous one on the extinction of the Phoenix Ridge.

Tectonic Structures of the South Scotia Ridge Adjacent to the Northern Part of the Powell basin, Antarctica (남극 포웰분지 북부인근 남스코시아 해령의 지체구조)

  • Hong, Jong-Kuk;Jin, Young-Keun;Park, Min-Kye;Lee, Joo-Han;Nam, Sang-Heon;Lee, Jong-Ik
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.409-416
    • /
    • 2006
  • Reflection seismic survey has been conducted using R/V Yuzmogeologia of Russia on the area of between northern part of Powell basin and South Scotia Ridge. 48-channel seismic data have been processed using Promax system. Hesperides and Eastern Deep located in the central part of the South Scotia Ridge show similar geological structure comprising two distinct sedimentary layers. The lower layer filled with fault breccia is considered to be formed with the expansion of the deeps. The upper layer is filled with pelagic sediments which implies this layer is formed after the spreading of the deeps has stopped. The south branch of the South Scotia Ridge is characterized by bigger width than the north branch. Topographical depression shown in the south branch is formed by many faults accompanied with the seafloor expansion of Powell basin.

  • PDF

On an Apparatus of Visualization for Magnetic Reversal and Magnetic Stripes (자기역전 시각화 장치와 지자기띠에 대하여)

  • Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.85-88
    • /
    • 2016
  • The new rocks of the oceanic crust, like basalt, are created in the mid-oceanic ridge, and the magnetic polarities of the rocks are supposed to be oriented as following the Earth's magnetic field. An extensive magnetic survey of total field at sea level reveals mainly unusual north-south magnetic stripes parallel to the axis of the mid-oceanic ridge, especially in the Atlantic Ocean. From this stripes the Earth's magnetic field is considered as repeatedly 'flipped'(the N pole becoming the S pole, and vice versa) and many times over geological time. The discovery of stripes of alternately normal and reversed-magnetized rocks forming the ocean floor has been a key evidence for the sea-floor spreading, continental drift, and plate tectonics. This study introduces a simple apparatus to explain a possible mechanism of the magnetic reversal in the new oceanic crust, which makes a magnetic stripe adjacent to the mid-oceanic ridge. The apparatus shows a bar magnet effect of adjoined stripes to have a special magnetic polarity on the rocks in the center of the mid-oceanic ridge. The new magnetic stripe seems to be generated not only by Earth's magnetic field, but also by neighbored stripes in the mid-oceanic ridge, acting as a bar magnet.

Petrography and Mineral Chemistry of Some Deep Sea Basaltic Rocks from the Western Caroline Ridge and Yap Trench-Arc System (서부 캐롤라인 해령과 얍 해구-열도계의 해저 현무암질암에 대한 암석 기재 및 광물화학)

  • Park Jun-Beom;Kwon Sung-Tack;Ahn Jung-Ho;Kang Jung-Keuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.71-84
    • /
    • 1992
  • This paper reports the results about the petrography and mineral chemistry of 13 representative dredged basaltic rocks from the western Caroline Ridge (WCR) and Yap Trench-Arc system, and provides the chemical and tectonic informations based on the compositions of clinopyroxene phenocrysts. Compositions of olivine phenocrysts in some analyzed samples are Fo$_{86-80}$. Plagioclase phenocrysts have variable compositions ranging from An$_{90}$ to An$_{55}$. The compositions of clinopyroxene phenocrysts vary according to geological environments; titansalite in atoll and guyot of WCR, diopside-augite in trough and bank of WCR, and endiopside in Yap Trench-Arc system. Application of the discrimination schemes proposed by Leterrier et al. (1982) suggests: (1) the samples from atoll-guyot belong to within plate alkali basalt, implying that western CR could be the continuation of eastern CR formed by hot spot magmatism, (2) the samples from the Yap Trench-Arc system with no present-day magmatism clearly indicate the occurrence of orogenic tholeiites presumably related to early island arc magmatisms in this area, however, (3) the samples from the bank and trough do not provide definitive informations, which might indicate the complexity of their origins.

  • PDF

Mineralogical and Geochemical Studies on the Daum Vent Field, Central Indian Ridge (인도양 중앙해령 Daum 열수분출대의 광물·지구화학적 연구)

  • Ryoung Gyun Kim;Sun Ki Choi;Jonguk Kim;Sang Joon Pak;Wonnyon Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.765-779
    • /
    • 2023
  • The Daum Vent Field (DVF) was newly discovered in the Central Indian Ridge during the hydrothermal expedition by the Korea Institute of Ocean Science & Technology (KIOST) in 2021. In this paper, we describe the detailed mineralogy and geochemistry of hydrothermal chimney and mound to understand the nature of hydrothermal mineralization in the DVF. The mineral assemblages (pyrite±sphalerite±chalcopyrite) of dominant sulfides, FeS contents (mostly <20 mole %) of sphalerite, and (Cu+Zn)/Fe values (0.001-0.22) of bulk compositions indicate that the DVF has an strong affinity with basaltic-hosted seafloor massive sulfide (SMS) deposit along the oceanic ridge. Combined with the predominance of colloform and/or dendritic-textured pyrite and relatively Fe-poor sphalerite in chimneys, the fluid-temperature dependency of trace element systematics (Co, Mn, and Tl) between chimney and mound indicates that the formation of mound was controlled by relatively reducing and high-temperature fluids compared to chimney. The δ34S values (+8.31 to +10.52‰) of pyrite reflect that sulfur and metals were mainly leached from the associated basement rocks (50.6-61.3%) with a contribution from reduced seawater sulfur (38.7-49.4%). This suggests that the fluid-rock interaction, with little effect of magmatic volatile influx, is an important metal source for the sulfide mineralization in the DVF.