• Title/Summary/Keyword: 항 대장암

Search Result 32, Processing Time 0.024 seconds

Resistant Starch (저항전분)

  • 신말식
    • Korean Journal of Human Ecology
    • /
    • v.2 no.2
    • /
    • pp.29-38
    • /
    • 1999
  • 저항전분(RS)은 건강한 사람의 소장에서 소화되지 않는 전분이나 전분질 식품의 부분이다. 저항전분은 4가지 형태로 구분하는데 RS 1은 물리적으로 효소와 만나지 않는 부분, RS 2는 생전분으로 감자, 바나나와 고아밀로오스 옥수수전분, RS 3는 노화된 전분 그리고 RS 4는 화학적으로 변성시킨 전분이다. RS 함량은 열에 안정한 $\alpha$ -아밀라아제나 pancreatin, pancreatic $\alpha$ -아밀라아제와 미생물에서 분리된 아밀라아제 등을 이용한 몇 가지 방법에 의해 분석되고 있다. RS는 대장에서 미생물에 의해 발효되어 단쇄지방산을 생성하는데 특히 부티릭산이 생성된다. 아세트산이나 프로피온산은 간의 대사에 영향을 주며 부티릭산은 항 종양(항 대장암) 특성이 있다. RS는 소화가 되지 않아 저열량원이므로 당뇨병 환자나 운동에 의한 혈당 조절이 필요할 때 조절능력을 갖는다. RS가 건강에 중요한 인자임이 알려지면, 건강을 위해 매일 섭취량의 증가를 권장해야 할 것이다.

  • PDF

유산균의 항암효과

  • 배형석
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 1997.06b
    • /
    • pp.15-17
    • /
    • 1997
  • 암 발생의 원인 중 80% 이상이 식사습관과 환경오염에 있는 것으로 인정되고 있다. 음식물, 담배, 술, 대기오염, 스트레스, 자외선이 그 대표적인 원인물질로 꼽을 수 있으며 그 중에서도 매일 섭취하는 음식물이 가장 중요한 발암요인으로 지적되고 있다. 대장암과 유방암의 발생에 대한 Wynder 등의 역학조사에서도 식사습관이 암 발생에 중요함을 시사 하고 있다. 동물성 단백질과 지방의 다량 섭취가 대장암과 유방암의 발생을 증가 시키고 섬유질이 풍부한 곡류와 야채의 섭취는 대장암 발생을 억제한다는 상관관계가 밝혀졌다. 그러나 우리가 늘 섭취하는 음식물 자체는 대장암과 유방암을 유발하는 기능이 거의 없다. 섭취된 음식물이 암을 일으키려면 장내 부패 미생물의 분해작용에 의하여 발암물질로 변환되는 과정이 필요하다. 그 발암물질들이 장관으로 흡수 자극함으로써 암을 유발할 수 있다. 반대로 일부장내 미생물들은 장내 발암물질들을 무독화 하거나 숙주의 면역기능을 증강 시킴으로써 암 발생을 억제할 수도 있다는 사실을 간과해서는 안 될 것이다. Mitsuoka는 장내 미생물이 암을 유발하는 중요한 요인이라고 강조하였다. Veer 등은 유산균 발효유를 많이 섭취하면 유방암 발생이 억제됨을, 국제암연구위원회는 섬유질을 많이 섭취하고 있는 핀란드 쿠피오의 거주자들에게는 덴마크의 코펜하겐에 거주하는 사람들에 비하여 대장암 발생율이 1/4에 불과하고 분변내 유산간균수는 100배 높은 사실을 역학조사에서 밝혔다. 이 외에 유산균과 발효유제품의 항암효과에 대한 실험결과들이 많이 발표되었다. 여기에서는 유산균의 항암효과에 대한 지금까지의 관련 자료들을 요약, 정리하여 고찰하고자 한다.높은 당 함량을 나타냈으며, T-AS는 70.3%의 당과 7.8%의 단백질로 구성 되었다. GLG 대부분의 분획들은 60~93%의 glucose로 구성된 다당류 이었으며, 주로 $\beta$-glucose로 구성된 다당류 이었다. 아미노산은 Asp 및 Glu의 산성 아미노산과 Ala, Leu 등의 함량이 높게 나타났으며, 비알칼리 추출물에서 Ser과 Thr의 함량이 높게 나타났다. 다당류 T-AS는 평균 분자량이 2,000 kD와 12kD에서 주 peak를 나타냈으며, 수용성 분획의 평균 분자량은 12kD이고 비수용성 분획은 36~2,000 kD의 평균 분자량 분포를 갖는 것으로 나타났다. IR과 NMR 분석 결과 890 cm-1에서 흡수 peak를 나타내어 $\beta$-(1,3)0glucan과 $\beta$-(1,6)-glucan의 구조를 갖는 다당류로 확인 되었다. T-AS 분획은 C:H:O:N의 함량비가 38.9:5.7:49.6:1.84%이며, 이 물질의 융점은 163 $^{\circ}C$로 연한 갈색을 나타낸다. 분리된 GLG의 항암활성 기전 규명을 위해, in vivo 항암실험, 항보체 활성능, 항체 생성능, serum protein 분비능, 대식세포의 탐식능과 활성능 및 세포간 물질 분비 등의 상관관계를 조사하였다. 다당류 GLG 분획물들 가운데 항보체의 활성이 높았던 분획은 sarcome 180에 대한 항암 활성이 높게 나타났다. 다당류 T-AS의 보체 활성화 기작은 classical과 alternative complement pathway의 양 경로를 통해 활성화 되었다.

  • PDF

ω3-Polyunsaturated Fatty Acids-induced Inhibition of Tumorigenicity and Invasion by Suppression of COX-2/MMPs/VEGF through NF-kB in Colon Cancer Cells (오메가-3 지방산에 의한 COX-2/MMPs/VEGF 억제에 따른 대장암세포의 종양 형성 및 침윤 억제)

  • Shin, Soyeon;Kim, Yong-Jo;Han, Seung-Hyeon;Silwal, Prashanta;Heo, Jun-Young;Jeon, Young-Joo;Park, Seung-Kiel;Kweon, Gi-Ryang;Park, Jong-Il;Lim, Kyu
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1020-1030
    • /
    • 2017
  • Epidemiology studies have reported a reduced incidence of colon cancer among populations that consume a large quantity of ${\omega}3-polyunsaturated$ fatty acids (${\omega}3-PUFAs$) of marine origin. Herein, we demonstrated a mechanism of anticancer action of ${\omega}3-PUFAs$, showing that they suppressed invasion and tumorigenicity in colon cancer cells. Docosahexaenoic acids (DHA) inhibited the cell growth of HT29 cells. This action likely involved apoptosis, given that the DHA treatment increased the cleaved form of PARP and sub G1 cells. Moreover, the invasiveness of HT29 cells was inhibited following DHA treatment, whereas arachidonic acid (AA) had no effect. The levels of Matrix-metalloproteinase-9 (MMP-9) and MMP-2 mRNA decreased after DHA pretreatment. DHA treatment inhibited MMP-9 and MMP-2 promoter activities and reduced VEGF promoter activity. DHA pretreatment also inhibited the activities of prostaglandin-2 (PGE2)-induced MMPs and the VEGF promoter. Cyclooxygenase-2 (COX-2) overexpression increased the activity of MMPs and that of the Vascular endotherial growth factor (VEGF) promoter in HT29 cells, and DHA inhibited NF-kB and COX-2 promoter reporter activities. As shown by in vivo experiments, when mouse colon cancer cells (MCA38) were implanted into Fat-1 and wild-type mice, both the tumoral size and volume were dramatically inhibited in Fat-1 transgenic mice. Furthermore, TUNEL-positive cells increased in tumors from Fat-1 mice compared with wild mice. In immunohistochemistry, the intensity of CD31 in Fat-1 tumors was weaker. These findings suggest that ${\omega}3-PUFAs$ may inhibit tumorigenicity and angiogenesis as well as cancer cell invasion by suppression of COX-2, MMPs and VEGF via the reduction of NF-kB in colon cancer.

Ziyuglycoside II Attenuates Tumorigenesis in Experimental Colitis-associated Colon Cancer (AOM/DSS로 유도된 마우스 대장암 모델에서의 Ziyuglycoside-II의 항염증효과)

  • Cheon, Hye-Jin;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.941-948
    • /
    • 2019
  • Colorectal cancer is a major health problem in industrialized countries. Ziyuglycoside II ($3{\beta}-3-{\alpha}$-1- arabinopyranosyloxy-19-hydroxyurs-12-en-28-oicacid), a triterpenoid saponin isolated from the roots of Sanguisorba officinalis L., possesses antioxidant, antiangiogenic, and anticancer properties. However, the therapeutic function of ziyuglycoside II in colitis-associated colorectal carcinogenesis is undefined. In the present study, the effect of ziyuglycoside II on colitis-associated colon cancer induced in mice using azoxymethane (AOM)/dextran sulfate sodium (DSS) was explored. The AOM model recapitulates many features of human colon cancer, but it lacks an inflammatory component. DSS induces colitis and promotes AOM-induced colon cancer in mice. BALB/c mice were injected with AOM and administered 2% DSS in drinking water. The mice were given ziyuglycoside II (1 or 5 mg/kg) orally three times per week, and colonic tissue was collected at 64 days. Administration of ziyuglycoside II markedly diminished the formation of colonic tumors. Western blot and immunohistological analyses showed that ziyuglycoside II noticeably decreased nuclear factor kappa-B-positive cells and levels of inflammation-related proteins, such as inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and interleukin-6 in colon tissue. It also prompted apoptosis. Ziyuglycoside II treatment augmented cleaved forms of caspase-3, caspase-7, and poly (ADP-ribose) polymerase in colonic tissues. In conclusion, ziyuglycoside II could defend against colitis-associated tumorigenesis in mice by inhibiting inflammation and inducing apoptosis. This shows a promising chemopreventive potential for its use in colitis-associated colon cancer.

Curcumin Inhibits Cell Proliferation of Human Colorectal HCT116 Cells through Up-Regulation of Activating Transcription Factor 3 (ATF3) (ATF3 발현을 통한 curcumin의 대장암 세포 성장 저해)

  • Kim, Hyo-Rim;Son, Jung-Bin;Lim, Seung-Hyun;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.492-498
    • /
    • 2012
  • To investigate whether phytochemicals affect cancer cell viability, human colorectal HCT116 cells were treated with four different phytochemicals. Among these phytochemicals, curcumin is the strongest inhibitor of cell proliferation. In addition, it decreased cell viability in a dose-dependent manner. To unveil the molecular mechanisms involved in the inhibition of cell proliferation by curcumin, we carried out oligo DNA microarray analysis. We found that 137 genes were up-regulated more than 2-fold, and 141 genes were down-regulated more than 2-fold by 25 ${\mu}M$ curcumin treatment. Among the up-regulated genes, we selected 3 genes (ATF-3, GADD45A, and NR4A1) to confirm microarray data. The results of RT-PCR strongly agreed with those of the microarray data. Among the phytochemicals used in this study, curcumin is the strongest inducer of ATF3 expression, and increased ATF3 expression in a dose-dependent manner. Interestingly, FACS analysis showed that the inhibition of cell growth by curcumin was recovered by ATF3-siRNA transfection. Finally, we detected the changes of gene expression by ectopic expression of ATF3. The results indicated that many up-regulated genes were related to apoptosis. Overall, these results suggest that ATF3 may play an important role in the anti-proliferative activity of curcumin in human colorectal cancer cells.

Mechanism of Anti-Invasive Action of Docosahexaenoic Acid in SW480 Human Colon Cancer Cell (인체 대장암 세포주 SW480에서 docosahexaenoic acid에 의한 침윤억제 기전)

  • Shin, So-Yeon;Kim, Yong-Jo;Song, Kyoung-Sub;Jing, Kaipeng;Kim, Na-Yeong;Jeong, So-Yeon;Park, Ji-Hoon;Seo, Kang-Sik;Heo, Jun-Young;Kwon, Hyun-Joo;Park, Jong-Il;Park, Seung-Kiel;Kweon, Gi-Ryang;Yoon, Wan-Hee;Hwang, Byung-Doo;Lim, Kyu
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.561-571
    • /
    • 2010
  • Colon cancer is one of the most common malignancies in the western world and the second leading cause of cancer death in Korea. Epidemiology studies have shown a reduced incidence of colon cancer among populations consuming a large quantity of ${\omega}3$-polyunsaturated fatty acids (${\omega}3$-PUFA) of marine origin. Recently, it has been found that ${\omega}3$-PUFA has an antineoplastic effect in several cancers. This study was designed to investigate the mechanism of the anti-invasive effect of ${\omega}3$-PUFA in colon cancer. ${\omega}3$-PUFA, docosahexaenoic acids (DHA) and eicosapentaenoic acid (EPA) treatment resulted in a dose-dependent inhibition of cell growth in SW480 human colon cancer cells. In contrast, arachidonic acid (AA), a ${\omega}6$-PUFA, exhibited no significant effect. This action likely involves apoptosis, given that DHA treatment increased apoptotic cells in TUNEL assay. Moreover, invasiveness of SW480 cells was inhibited following treatment of DHA in a dose-dependent manner; in contrast, AA had no effect. The levels of MMP-9 and MMP-2 mRNA decreased after DHA pretreatment. MMP-9 and MMP-2 promoter activities were also inhibited by DHA treatment. The levels of NF-kB and p-IkB protein were down-regulated by DHA pretreatment in a dose dependent manner. In addition, DHA inhibited NF-kB promoter reporter activities. These findings suggest that ${\omega}3$-PUFA may inhibit cancer cell invasion by inhibition of MMPs via reduction of NF-kB in colon cancer. In conclusion, ${\omega}3$-PUFA could be used for chemoprevention and treatment of human colon cancer.

Apoptotic Effect of Sasa quelpaertensis Nakai in Human Colon Cancer HT-29 Cells (인간 대장암 HT-29 세포에서 제주조릿대의 세포사멸 효과)

  • Byun, Ji Hee;Kim, Min Young
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.1012-1018
    • /
    • 2014
  • Sasa quelpaertensis Nakai (Korean name, Jeju-Joritdae) is one of the most abundant plants on Mt. Halla, Jeju Island, and it has long been used in traditional medicines. Recent studies have reported it as possessing various beneficial functions, including anti-inflammatory, anti-diabetic, anti-hypertension, anti-gastritis, anti-oxidant, and anti-cancer effects. However, the molecular mechanisms of its anti-cancer activity have not been clearly elucidated. In this study, we investigated the anti-cancer effects and mechanism of S. quelpaertensis on human colon cancer HT-29 cells. Cell growth inhibition by S. quelpaertensis was determined by MTT assay. Apoptosis was performed by DNA fragmentation, flow cytometry with propidium iodide staining (PI), and reverse transcription-polymerase chain reaction (RT-PCR) to confirm the anti-apoptotic factors, such as inhibitor of apoptosis (IAP) family members. $NO^{\bullet}$ production was determined by Griess assay. S. quelpaertensis treatment resulted in the time- and dose-dependent inhibition of the cell viability of HT-29 cells by inducing apoptosis, as evidenced by the accumulation of the sub-G1 cell population stained by PI, as well as the ladder-like DNA fragmentation in a dose-dependent manner. S. quelpaertensis-inducing apoptosis was accompanied by the induction of S cell cycle arrests, increasing $NO^{\bullet}$ concentrations, and the down-regulation of IAPs, including X-chromosome-linked IAP (XIAP), cellular IAP-1 (cIAP-1), cIAP-2, and survivin. Taken together, these findings have important implications for future clinical developments of S. quelpaertensis in colon cancer treatment.

Anti-proliferative Effects and Apoptosis Induced by Chrysin or Emodin in Human Colorectal HCT116 Cells (Chrysin과 emodin에 의한 대장암 세포 항 성장 활성 및 세포사멸)

  • Ryu, Seung-Min;Kim, Yong-Hyun;Lee, Eun-Joo;Chung, Chungwook;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.929-936
    • /
    • 2021
  • In the present study, we screened candidate natural compounds which possess the strong anti-proliferative effects on human colorectal HCT116 cells using the commercial natural product library (Selleckchem, L1400) based on cell viability assay. Human colorectal cancer HCT116 cells were incubated with 50 μM of each compound from the natural product library, and then cell viability was measured by MTT assay. From the first screening, five different kinds of natural products (chrysin, diosmetin, emodin, piperlongumine, and tanshinone I) were selected based on cell viability assay in HCT116 cells and commercial availability. All selected natural products significantly decreased cell viabilities in HCT116 cells, whereas pro-apoptotic protein NAG-1 is strongly induced by chrysin or emodin treatment. Chrysin and emodin decreased cell viability in a dose-dependent manner. Moreover, chrysin and emodin increased the expression of pro-apoptotic NAG-1 protein in a dose- and time-dependent manner. In addition, PARP cleavage induced by chrysin or emodin was recovered in part by the transfection of NAG-1 siRNA indicating that NAG-1 may be one of the genes responsible for apoptosis induced by chrysin or emodin. Overall, our findings may provide basic screening data on natural products which possess anti-proliferative activities and may help to understand the molecular mechanisms of anti-proliferative and pro-apoptotic activities mediated by chrysin and emodin.

Analysis of p53-Dependency of Differentially Expressed Genes by Capsaicin in Human Colorectal Cancer Cell (인간 대장암 세포주에서 capsaicin 처리에 의한 차별적인 유전자 발현의 p53 의존성 분석)

  • Kim, Hyo-Eun;Jang, Min-Jeong;Lim, Seung-Hyun;Kim, Hyo-Rim;Kim, Soon-Young;Lee, Gun-Joo;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.213-218
    • /
    • 2010
  • In the present study, we investigated anti-proliferative activities of capsaicin and gene expression changes in response to capsaicin treatment in human colorectal HCT116 cells. The results showed that capsaicin decreased cell viabilities in a dose dependent manner and induced global gene expression changes. We found that 103 genes were up-regulated more than twofold, whereas 153 genes were down-regulated more than twofold by $100\;{\mu}M$ capsaicin treatment. Among the up-regulated genes, we selected 4 genes (NAG-1, DDIT3, GADD45A and PCK2) and performed RT-PCR to confirm the microarray data. We found that $100\;{\mu}M$ of capsaicin increased tumor suppressor p53 gene expression. In addition, the results showed that NAG-1, DDIT3 and GADD45A expressions were not dependent on p53 presence, whereas PCK2 expression. The results of this study may help to increase our understandings of the molecular mechanism of anti-proliferative activity mediated by capsaicin in human colorectal cancer cells.