• Title/Summary/Keyword: 항적 데이터

Search Result 74, Processing Time 0.023 seconds

자율운항선박의 원격 상황인식을 위한 AIS 기반 항적 데이터 분석 기초연구

  • Choe, Jin-U;Park, Jeong-Hong;Kim, Hye-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.52-53
    • /
    • 2020
  • 자율운항선박의 효과적인 운영을 위해서는 자선 주변 해상 환경의 장애물 및 자선, 타선에 대한 통합적인 상황인식 정보가 요구된다. 상황인식은 현재의 시점에서 관측되는 정보를 바탕으로 운항 해역에 대한 종합적인 인식과 함께 가까운 미래에서 발생할 수 있는 위험 상황 및 비정상 상황에 대한 추론까지를 포함한다. 본 연구에서는 이러한 자율운항선박의 원격 상황인식을 위한 기초연구로써, 선박자동식별시스템 AIS의 항적 정보 분석에 대한 내용을 수행한다. AIS에서 얻어지는 항적 정보를 이용한 해상 상황인식을 수행하기 위한 전처리 과정으로써, 손실 데이터에 대한 보간 방법에 대한 연구를 수행한다. 구체적인 방법론은, 추적필터를 이용한 보간 방법과 항적 정보 학습 기반의 보간 방법을 적용하였으며, AIS에서 얻어지는 실제 항적 데이터를 이용하여 초기 결과를 검증하였다.

  • PDF

A Comparative Study of Vessel Trajectory Prediction Error based on AIS and LTE-Maritime Data (AIS 및 LTE-Maritime 데이터를 활용한 항적 예측 오차 비교연구)

  • Ji Hong, Min;Seungju, Lee;Deuk Jae, Cho;Jong-Hwa, Baek;Hyunwoo, Park
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.576-584
    • /
    • 2022
  • AIS is widely utilized in vessel traffic services for marine traffic safety. In 2021, Korea deployed the high-speed maritime wireless communication system (LTE-Maritime) on the sea following IMO's proposal for the introduction of e-Navigation. In this paper, vessel trajectory data from AIS and LTE-Maritime were used for vessel trajectory prediction to compare and analyze the two systems. The results show that the trajectory prediction error of LTE-Maritime was smaller than that of AIS due to the granular and uniform data provided by LTE-Maritime. Additionally, it was revealed that time interval is the most important factor influencing the errors in trajectory prediction, with the prediction error of LTE-Maritime growing at a slower rate of 17% than AIS. This research contributes to the literature by quantitatively comparing AIS and LTE-Maritime systems for the first time.

Composing Recommended Route through Machine Learning of Navigational Data (항적 데이터 학습을 통한 추천 항로 구성에 관한 연구)

  • Kim, Joo-Sung;Jeong, Jung Sik;Lee, Seong-Yong;Lee, Eun-seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.285-286
    • /
    • 2016
  • We aim to propose the prediction modeling method of ship's position with extracting ship's trajectory model through pattern recognition based on the data that are being collected in VTS centers at real time. Support Vector Machine algorithm was used for data modeling. The optimal parameters are calculated with k-fold cross validation and grid search. We expect that the proposed modeling method could support VTS operators' decision making in case of complex encountering traffic situations.

  • PDF

자율운항선박의 운항 경로 예측 및 운항 해역 항적 정보 기반의 비상상황인식 프레임워크 설계

  • 박정홍;최진우;김채원;홍성훈;김혜진
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.73-75
    • /
    • 2022
  • 본 논문에서는 자율운항선박의 예측 가능한 운항 경로 상에 잠재된 비상상황을 인식하기 위하여 운항 해역의 항적 정보를 활용한 방안과 이를 기반으로 충돌 위험과 같은 비상위험을 식별하는 프레임워크를 설계하였다. 설계한 프레임워크는 크게 항적 특성 분석 모듈, 항로예측 모듈, 위험 식별 모듈로 구성된다. 항적 특성 분석 모듈에서는 자율운항선박의 운항 해역에 관한 선박들의 항적 정보를 활용하기 위하여, 대상 VTS 관제 영역 내에서 취합된 누적 선박자동식별장치(AIS) 데이터를 이용하여 선박의 항적 특성을 분석하여 데이터베이스(DB)를 생성하였다. 그리고 운항 경로 예측 모듈에서는 누적된 항적 정보와 자율운항선박의 현재 운항 정보를 기반으로 특정 시간 동안의 운항 경로를 예측하기 위한 학습 네트워크 모델을 구성하였다. 마지막으로, 위험 식별 모듈에서는 예측한 운항 경로 상에 최근접점과 최근접점 거리 정보를 이용하여 충돌 위험 가능성이 있는 충돌위험영역을 식별하였다. 설계한 프레임워크는 자율운항선박의 육상 관제소에서 원격 제어를 통해 위험상황을 인지하고 회피할 수 있는 정보를 제공할 수 있음을 실제 항적 데이터를 활용하여 그 결과를 검증하였다.

  • PDF

Decision Making Support System for VTSO using Extracted Ships' Tracks (항적모델 추출을 통한 해상교통관제사 의사결정 지원 방안)

  • Kim, Joo-Sung;Jeong, Jung Sik;Jeong, Jae-Yong;Kim, Yun Ha;Choi, Ikhwan;Kim, Jinhan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.310-311
    • /
    • 2015
  • Ships' tracking data are being monitored and collected by vessel traffic service center in real time. In this paper, we intend to contribute to vessel traffic service operators' decision making through extracting ships' tracking patterns and models based on these data. Support Vector Machine algorithm was used for vessel track modeling to handle and process the data sets and k-fold cross validation was used to select the proper parameters. Proposed data processing methods could support vessel traffic service operators' decision making on case of anomaly detection, calculation ships' dead reckoning positions and etc.

  • PDF

해상교통 밀집도 평가방법의 비교분석을 통한 개선방안 제안

  • 김윤지;이정석;조익순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.426-428
    • /
    • 2022
  • 해상 교통량을 정량적으로 평가하고 추출하기 위한 방법으로 선박 AIS 데이터 기반의 밀집도 분석을 활용하고 있다. 밀집도는 단위시간 당 단위면적에 분포하는 선박 통항량을 계산한 것으로, 일반적으로 그리드 셀 내에 존재하는 선박 항적 포인트 개수, 항적도 라인 길이, 선박 척수 등을 계산한 밀집도 분석 방법과 커널 밀도 추정(Kernel Density Estimation) 방법 등이 있다. 하지만, AIS 데이터의 특징상 선박 속력에 따라 수신 주기가 다르기 때문에 항적이 등간격으로 나타나지 않는 문제점이 있으며, 선박의 이동과 시간의 속성으로 인해 각각의 밀집도 분석 방법은 한계점이 존재한다. 따라서 본 연구에서는 실측 AIS 데이터를 이용하여 다양한 방법의 선박 밀집도 분석을 수행하고 이를 비교하였다. 그 결과, 항적도 라인 길이에 의한 밀집도 분석이 가장 정량적인 방법으로 나타났으며 이를 통항 척수로 변환할 수 있는 선박 밀집도 분석을 개선방안으로 제안한다.

  • PDF

Deep-learning based Fishing Gear Type Classification (딥러닝 기반 어선조업종류 판별 방법)

  • Kim, Kwang-Il;Kim, Ji-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.33-34
    • /
    • 2019
  • 대부분의 나라에서는 어선의 위치발신장치를 이용하여 어선 조업상황을 모니터링 한다. 우리나라도 어선의 위치발신장치를 이용하여 어선 조업량, 불법조업 유무를 판별한다. 현재까지는 어선의 불법조업 유무 판별은 어선의 위치정보 기반으로 이루어 졌으나, 허가받지 않는 어구를 사용하는 불법조업에 대한 판별은 불가능 하였다. 이에 본 논문에서는 어선 항적과 조업면허 데이터를 이용하여 데이터 기반의 어선 조업 판별모델을 개발하고자 한다. 이를 위해 어선 항적데이터를 시계열 단위로 전처리하여 학습 이미지들을 생성하고, 해당 어선의 조업면허 정보를 레이블로 하여 학습 데이터를 제안하는 딥러닝 모델에 적용한다. 제안하는 방법의 검증을 위해 1년 동안 제주 주변해역에서 조업하는 어선의 선박자동식별장치의 항적데이터를 수집하여 실험을 하였다. 실험 결과 제안한 방법의 분류정확도는 71.5%를 얻었다.

  • PDF

AIS 데이터를 활용한 선박의 항적모니터링 기능구현에 관한 연구

  • Kim, Eun-Gyeong;Jeong, Jung-Sik;Park, Gye-Gak
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.138-140
    • /
    • 2012
  • 본 연구에서는 실제 AIS의 정적, 동적 데이터를 수집하여 항계내 통항 선박의 움직임을 파악하였다. 실제 완도항 부근의 직선항로을 통항하는 선박 항적의 분석하여 불규칙적인 선박의 특성을 알아보고자 하였다. 기존의 과거 누적 데이터의 퍼지이론을 활용한 이상 거동의 선박식별 시스템은 전문가 시스템에 의존하여 항적의 비정상성을 판단하므로 항로의 특성에 따른 실 항해상황을 간과할 수 있는 문제점이 있다. 본 연구는 실시간 AIS 정보를 활용하여 항로이탈의 변화율에 해당하는 곡률분석, 항로선으로부터 좌우의 변동을 보다 정확하게 모니터링 할 수 있는 이상 거동 선박을 식별하는 방법을 제안한다. 본 연구는 VTS 및 VMS의 응용서비스로서 해양사고의 사전예방을 위한 연안 및 항만수로의 효율적인 관리에 기여할 것이다.

  • PDF

Comparison of Clustering Techniques in Flight Approach Phase using ADS-B Track Data (공항 근처 ADS-B 항적 자료에서의 클러스터링 기법 비교)

  • Jong-Chan Park;Heon Jin Park
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.29-38
    • /
    • 2021
  • Deviation of route in aviation safety management is a dangerous factor that can lead to serious accidents. In this study, the anomaly score is calculated by classifying the tracks through clustering and calculating the distance from the cluster center. The study was conducted by extracting tracks within 100 km of the airport from the ADS-B track data received for one year. The wake was vectorized using linear interpolation. Latitude, longitude, and altitude 3D coordinates were used. Through PCA, the dimension was reduced to an axis representing more than 90% of the overall data distribution, and k-means clustering, hierarchical clustering, and PAM techniques were applied. The number of clusters was selected using the silhouette measure, and an abnormality score was calculated by calculating the distance from the cluster center. In this study, we compare the number of clusters for each cluster technique, and evaluate the clustering result through the silhouette measure.

Big Data Processing and Performance Improvement for Ship Trajectory using MapReduce Technique

  • Kim, Kwang-Il;Kim, Joo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.65-70
    • /
    • 2019
  • In recently, ship trajectory data consisting of ship position, speed, course, and so on can be obtained from the Automatic Identification System device with which all ships should be equipped. These data are gathered more than 2GB every day at a crowed sea port and used for analysis of ship traffic statistic and patterns. In this study, we propose a method to process ship trajectory data efficiently with distributed computing resources using MapReduce algorithm. In data preprocessing phase, ship dynamic and static data are integrated into target dataset and filtered out ship trajectory that is not of interest. In mapping phase, we convert ship's position to Geohash code, and assign Geohash and ship MMSI to key and value. In reducing phase, key-value pairs are sorted according to the same key value and counted the ship traffic number in a grid cell. To evaluate the proposed method, we implemented it and compared it with IALA waterway risk assessment program(IWRAP) in their performance. The data processing performance improve 1 to 4 times that of the existing ship trajectory analysis program.