• Title/Summary/Keyword: 항복 전압

Search Result 221, Processing Time 0.026 seconds

Hybrid Fabrication of Screen-printed Pb(Zr,Ti)O3 Thick Films Using a Sol-infiltration and Photosensitive Direct-patterning Technique (졸-침투와 감광성 직접-패턴 기술을 이용하여 스크린인쇄된 Pb(Zr,Ti)O3 후막의 하이브리드 제작)

  • Lee, J.-H.;Kim, T.S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.83-89
    • /
    • 2015
  • In this paper, we propose a fabrication technique for enhanced electrical properties of piezoelectric thick films with excellent patterning property using sol-infiltration and a direct-patterning process. To achieve the needs of high-density and direct-patterning at a low sintering temperature (< $850^{\circ}C$), a photosensitive lead zirconate titanate (PZT) solution was infiltrated into a screen-printed thick film. The direct-patterned PZT films were clearly formed on a locally screen-printed thick film, using a photomask and UV light. Because UV light is scattered in the screen-printed thick film of a porous powder-based structure, there are needs to optimize the photosensitive PZT sol infiltration process for obtaining the enhanced properties of PZT thick film. By optimizing the concentration of the photosensitive PZT sol, UV irradiation time, and solvent developing time, the hybrid films prepared with 0.35 M of PZT sol, 4 min of UV irradiation and 15 sec solvent developing time, showed a very dense with a large grain size at a low sintering temperature of $800^{\circ}C$. It also illustrated enhanced electrical properties (remnant polarization, $P_r$, and coercive field, $E_c$). The $P_r$ value was over four times higher than those of the screen-printed films. These films integrated on silicon wafer substrate could give a potential of applications in micro-sensors and -actuators.

Studies on Fabrication and Characteristics of $Al_{0.3}Ga_0.7N/GaN$ Heterojunction Field Effect Transistors for High-Voltage and High-Power Applications (고전압과 고전력 응용을 위한 $Al_{0.3}Ga_0.7N/GaN$ 이종접합 전계효과 트랜지스터의 제작 및 특성에 관한 연구)

  • Kim, Jong-Wook;Lee, Jae-Seung;Kim, Chang-Suk;Jeong, Doo-Chan;Lee, Jae-Hak;Shin, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.13-19
    • /
    • 2001
  • We report on the fabrication and characterization of $Al_{0.3}Ga_{0.7}N$ HFETs with different barrier layer thickness which were grown using plasma-assisted molecular beam epitaxy (PAMBE). The barrier thickness of $Al_{0.3}Ga_{0.7}N$/GaN HFETs could be optimized in order to maximize 2 dimensional electron gas induced by piezoelectric effect without the relaxation of $Al_{0.3}Ga_{0.7}N$ layer. $Al_{0.3}Ga_{0.7}N$/GaN (20 nm/2 mm) HFET with 0.6 ${\mu}m$-long and 34 ${\mu}m$-wide gate shows saturated current density ($V_{gs}=1\;V$) of 1.155 A/mm and transconductance of 250 ms/mm, respectively. From high frequency measurement, the fabricated $Al_{0.3}Ga_{0.7}N$/GaN HFETs showed $F_t=13$ GHz and $F_{max}=48$ GHz, respectively. The uniformity of less than 5% could be obtained over the 2 inch wafer. In addition to the optimization of epi-layer structure, the relation between breakdown voltage and high frequency characteristics has been examined.

  • PDF

Effect of Firing Temperature on Microstructure and the Electrical Properties of a ZnO-based Multilayered Chip Type Varistor(MLV) (소성온도에 따른 ZnO계 적층형 칩 바리스터의 미세구조와 전기적 특성의 변화)

  • Kim, Chul-Hong;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.286-293
    • /
    • 2002
  • Microstructure and the electrical porperties of a ZnO-based multilayered chip-type varistor(abbreviated as MLV) with Ag/Pd(7:3) inner electrode have been studied as a function of firing of temperature. At 1100$^{\circ}$C, inner electrode layers began to show nonuniform thickness and small voids, which resulted in significant disappearance of the electrode pattern and delamination at 1100$^{\circ}$C. MLVs fired at 950$^{\circ}$C showed large degradation in leakage current, probably due to incomplete redistribution of liquid and transition metal elements in pyrochlore phase decomposition. Those fired at 1100$^{\circ}$C and above, on the other hand, revealed poor varistor characteristics and their reproductibility, which are though to stem from the deformation of inner electrode pattern, the reaction between electrode materials and ZnO-based ceramics, and the volatilization of $Bi_2O_3$. Throughout the firing temperature range of 950∼1100$^{\circ}$C, capacitance and leakage current increased while breakdown voltage and peak current decreased with the increase of firing temperature, but nonlinear coefficient and clamping ratio kept almost constant at ∼30 and 1.4, respectively. In particular, those fired between 1000$^{\circ}$C and 1050$^{\circ}$C showed stable varistor characteristics with high reproducibility. It seems that Ag/Pd(7:3) alloy is one of the electrode materials applicable to most ZnO-based MLVs incorporating with $Bi_2O_3$ when cofired up to 1050$^{\circ}$C.

Triboelectric Nanogenerator Utilizing Metal-to-Metal Surface Contact (금속-금속 표면 접촉을 활용한 정전 소자)

  • Chung, Jihoon;Heo, Deokjae;Lee, Sangmin
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.301-306
    • /
    • 2019
  • Triboelectric nanogenerator (TENG) is one of the energy harvesting methods in spotlight that can convert mechanical energy into electricity. As TENGs produce high electrical output, previous studies have shown TENGs that can power small electronics independently. However, recent studies have reported limitations of TENG due to air breakdown and field emission. In this study, we developed a triboelectric nanogenerator that utilizes the metal-to-metal surface contact to induce ion-enhanced field emission and electron avalanche for electrons to flow directly between two electrodes. The average peak open-circuit voltage of this TENG was measured as 340 V, and average peak closed-circuit current was measured as 10 mA. The electrical output of this TENG has shown different value depending on the surface charge of surface charge generation layer. The TENG developed in this study have produced RMS power of 0.9 mW, which is 2.4 times higher compared to conventional TENGs. The TENG developed in this study can be utilized in charging batteries and capacitors to power portable electronics and sensors independently.

HVPE growth of Mg-doped AlN epilayers for high-performance power-semiconductor devices (고효율 파워 반도체 소자를 위한 Mg-doped AlN 에피층의 HVPE 성장)

  • Bae, Sung Geun;Jeon, Injun;Yang, Min;Yi, Sam Nyung;Ahn, Hyung Soo;Jeon, Hunsoo;Kim, Kyoung Hwa;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.275-281
    • /
    • 2017
  • AlN is a promising material for wide band gap and high-frequency electronics device due to its wide bandgap and high thermal conductivity. AlN has advantages as materials for power semiconductors with a larger breakdown field, and a smaller specific on-resistance at high voltage. The growth of a p-type AlN epilayer with high conductivity is important for a manufacturing an AlN-based applications. In this paper, Mg doped AlN epilayers were grown by a mixed-source HVPE. Al and Mg mixture were used as source materials for the growth of Mg-doped AlN epilayers. Mg concentration in the AlN was controlled by modulating the quantity of Mg source in the mixed-source. Surface morphology and crystalline structure of AlN epilayers with different Mg concentrations were characterized by FE-SEM and HR-XRD. XPS spectra of the Mg-doped AlN epilayers demonstrated that Mg was doped successfully into the AlN epilayer by the mixed-source HVPE.

트렌치 게이트 Power MOSFET의 고신뢰성 게이트 산화막 형성 연구

  • Kim, Sang-Gi;Yu, Seong-Uk;Gu, Jin-Geun;Na, Gyeong-Il;Park, Jong-Mun;Yang, Il-Seok;Kim, Jong-Dae;Lee, Jin-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.108-108
    • /
    • 2011
  • 최근 에너지 위기와 환경 규제 강화 및 친환경, 녹색성장 등의 이슈가 대두되면서 에너지 절감과 환경보호 분야에 그린 전력반도체 수요가 날로 증가되고 있다. 이러한 그린 전력반도체는 휴대용컴퓨터, 이동통신기기, 휴대폰, 조명, 자동차, 전동자전거, LED조명 등 다양한 종류의 전력소자들이 사용되고 있으며, 전력소자의 수요증가는 IT, NT, BT 등의 융복합기술의 발달로 새로운 분야에 전력소자의 수요로 창출되고 있다. 특히 환경오염을 줄이기 위한 고전압 대전류 전력소자의 에너지 효율을 높이는 연구 개발이 활발히 진행되고 있다. 종래의 전력소자는 평면형의 LDMOS나 VDMOS 기술을 이용한 소전류 주로 제작되어 수십 암페어의 필요한 대전류용으로 사용이 불가능하다. 반면 수직형 전력소자인 트렌치를 이용한 power 소자는 집적도를 증가 시킬 수 있을 뿐만 아니라 대전류 고전압 소자 제작에 유리하다. 특히 평면형 소자에 비해 약 30%이상 칩 면적을 줄일 수 있을 뿐만 아니라 평면형에 비해 on-저항을 낮출 수 있기 때문에 수요가 날로 증가하고 있다. 트렌치 게이트 power MOS의 중요한 게이트 산화막 형성 기술은 트렌치 내부에 균일한 두께의 산화막 형성과 높은 신뢰성을 갖는 게이트 산화막 형성이 매우 중요하다. 본 연구에서는 전력소자를 제조하기 위해 트렌치 기술을 이용하여 수직형 전력소자를 제작하였다. 트렌치형 전력소자는 게이트 산화막을 균일하게 형성하는 것이 매우 중요한 기술이다. 종래의 수평형 소자 제조시 게이트 산화막 형성 후 산화막 두께가 매우 균일하게 성장되지만, 수직형 트렌치 게이트 산화막은 트렌치 내부벽의 결정구조가 다르기 때문에 $1000^{\circ}C$에서 열산화막 성장시 결정구조와 결정면에 따라 약 35% 이상 열산화막 두께가 차이가 난다. 본 연구는 이러한 문제점을 해결하기 위해 트렌치를 형성한 후 트렌치 내부의 결정구조를 변화 및 산화막의 종류와 산화막 형성 방법을 다르게 하여 균일한 게이트 산화막을 성장시켜 산화막의 두께 균일도를 향상시켰다. 그 결과 고밀도의 트렌치 게이트 셀을 제작하여 제작된 트렌치 내부에 동일한 두께의 게이트 산화막을 여러 종류로 산화막을 성장시킨 후 성장된 트렌치 내벽의 산화막의 두께 균일도와 게이트 산화막의 항복전압을 측정한 결과 약 25% 이상 높은 신뢰성을 갖는 게이트 산화막을 형성 할 수 있었다.

  • PDF

3-Dimensional LADAR Optical Detector Development in Geiger Mode Operation (Geiger Mode로 동작하는 3차원 LADAR 광수신기 개발)

  • Choi, Soon-Gyu;Shin, Jung-Hwan;Kang, Sang-Gu;Hong, Jung-Ho;Kwon, Yong-Joon;Kang, Eung-Cheol;Lee, Chang-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.4
    • /
    • pp.176-183
    • /
    • 2013
  • In this paper, we report the design, fabrication and characterization of the 3-Dimensional optical receiver for a Laser Detection And Ranging (LADAR) system. The optical receiver is composed of three parts; $16{\pm}16$ Geiger Mode InGaAs Avalanche Photodiode (APD) array device operated at 1560 nm wavelength, Read Out Integrated Circuit (ROIC) measuring the Time-Of-Flight (TOF) of the return signal reflected from target objects, a package and cooler maintaining the proper operational condition of the detector and control electronics. We can confirm that the LADAR system can detect the signal from a target up to 1.2 km away, and it showed low Dark Count Rate (DCR) of less than 140 kHz, and higher than 28%-Photon Detection Efficiency (PDE). This is considered to be the best performance of the $16{\pm}16$ FPA APD optical receiver for a LADAR system.

A Study on Non-destructive Stress Measurement of Steel Plate using a Magnetic Anisotropy Sensor (자기이방성센서를 이용한 강판의 비파괴 응력 계측에 관한 연구)

  • Kim, Daesung;Moon, Hongduk;Yoo, Jihyeung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.71-77
    • /
    • 2011
  • Recently, non-destructive stress measurement method using magnetic anisotropy sensor has been applied to the construction site such as steel bridges and steel pipes. In addition, steel rib used in the tunnel construction site was found to be possible to measure the stress by non-destructive method. In this study, steel loading experiments using magnetic anisotropy sensor developed in Japan and strain gauges were conducted to derive stress sensitivity curve for domestic steel SS400. Also, additional steel loading experiments and numerical analysis were performed for evaluation of applicability for non-destructive stress measurement method using magnetic anisotropy sensor. As a result of this study, stress sensitivity curves for domestic steel SS400 were derived using output voltage measured by magnetic anisotropy sensor and average of stress measured by strain gauges depending on the measurement location. And as a result of comparing additional steel loading experiments with the numerical analysis, error level of magnetic anisotropy sensor is around 20MPa. When considering the level of the yield stress(245MPa) of steel, in case of using magnetic anisotropy sensor in order to determine the stress status of steel, it has sufficient accuracy in engineering. Especially, magnetic anisotropy sensor can easily identify the current state of stress which considers residual stress at steel structure that stress measurement sensor is not installed, so we found that magnetic anisotropy sensor can be applied at maintenance of steel structure conveniently.

A study on process optimization of diffusion process for realization of high voltage power devices (고전압 전력반도체 소자 구현을 위한 확산 공정 최적화에 대한 연구)

  • Kim, Bong-Hwan;Kim, Duck-Youl;Lee, Haeng-Ja;Choi, Gyu-Cheol;Chang, Sang-Mok
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.227-231
    • /
    • 2022
  • The demand for high-voltage power devices is rising in various industries, but especially in the transportation industry due to autonomous driving and electric vehicles. IGBT module parts of 3.3 kV or more are used in the power propulsion control device of electric vehicles, and the procurement of these parts for new construction and maintenance is increasing every year. In addition, research to optimize high-voltage IGBT parts is urgently required to overcome their very high technology entry barrier. For the development of high-voltage IGBT devices over 3.3 kV, the resistivity range setting of the wafer and the optimal conditions for major unit processes are important variables. Among the manufacturing processes to secure the optimal junction depth, the optimization of the diffusion process, which is one step of the unit process, was examined. In the diffusion process, the type of gas injected, the injection time, and the injection temperature are the main variables. In this study, the range of wafer resistance (Ω cm) was set for the development of high voltage IGBT devices through unit process simulation. Additionally, the well drive in (WDR) condition optimization of the diffusion process according to temperature was studied. The junction depth was 7.4 to7.5 ㎛ for a ring pattern width of 23.5 to25.87 ㎛, which can be optimized for supporting 3.3 kV high voltage power devices.

The Electrical Characteristics of 1200V Trench Gate MOSFET Based on SiC (1200V급 SiC 기반 트렌치 게이트 MOSFET의 전기적 특성에 관한 연구)

  • Yu Rim Kim;Dong Hyeon Lee;Min Seo Kim;Jin Woo Choi;Ey Goo Kang
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.103-108
    • /
    • 2023
  • This research was carried out experiments with changing processes and design parameters to optimally design a SiC-based 1200V power MOSFET, and then, essential electrical characteristics were derived. In order to secure the excellence of the trench gate type SiC power MOSFET device to be designed, electrical characteristics were derived by designing it under conditions such as planner gate SiC power MOSFET, and it was compared with the trench gate type SiC power MOSFET device. As a result of the comparative analysis, the on-resistance while maintaining the yield voltage was 1,840mΩ, for planner gate power MOSFET and to 40mΩ for trench gate power MOSFET, respectively, indicating characteristics more than 40 times better. It was judged that excellent results were derived because the temperature resistance directly affects energy efficiency. It is predicted that the devices optimized through this experiment can sufficiently replace the IGBT devices generally used in 1200V class, and that since the SiC devices are wide band gap devices, they will be widely used to apply semiconductors for vehicles using devices with excellent thermal characteristics.