• Title/Summary/Keyword: 항법시스템

Search Result 1,519, Processing Time 0.029 seconds

Rapid Alignment for SDINS Using Equivalent Linear Transformation (등가선형변환적용 항법시스템 급속 정렬)

  • Yu, Myeong-Jong;Park, Chan-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.419-425
    • /
    • 2007
  • A rapid one-shot alignment method of the Strapdown INS (SDINS) for a vertical launch is proposed. The proposed alignment is performed using the accelerometer output of the Slave INS and the attitude of the Master INS. To improve the accuracy and the speed of the alignment, the equivalent linear transformation and the pre-filtering method are developed. Experiment results show that the proposed method is effective in improving the accuracy and the speed of the alignment.

A Study on the Orbits and the Ground-based Optical Tracking of a Future Korean Navigation Satellite System (미래 한국형 위성항법시스템의 궤도와 지상기반 광학추적에 대한 연구)

  • Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Choi, Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.121-129
    • /
    • 2012
  • Any development plan of a Korean space-based navigational system has been neither designed nor introduced yet. However, the demand for the development of a domestic regional satellite navigation system can be originated from the outside of market. The growing dependency on satellite navigational systems in Korea eventually requires the retainment and the operation of a domestic navigational satellite system. There is not many choices on the orbit designs and the system design concepts of a regional augmented navigation satellite system or a regional navigation satellite system for the service on the vicinity of the Korean peninsular. Space situational awareness (SSA) has been a rising issue for both national security and more realistic space business in Korea. Also SSA related technologies in Korea is a newly inaugurated area and is necessary to generate a navigation messages and maintain a future Korean navigation satellite system. In this study, the availability of Japanese Quasi Zenith Satellite System (QZSS) expected to be deployed definitely sooner than Korean counter-part is analyzed. The availability of the similar configured system over Korea is investigated with assumed QZSS type orbit. Also, feasible configuration of orbits for domestic navigation satellite system is suggested. And the observability of a ground-based optical tracking system as a secondary tracking capability is analyzed.

Requirement Analysis of Navigation System for Lunar Lander According to Mission Conditions (임무조건에 따른 달 착륙선 항법시스템 요구성능 분석)

  • Park, Young Bum;Park, Chan Gook;Kwon, Jae Wook;Rew, Dong Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.734-745
    • /
    • 2017
  • The navigation system of lunar lander are composed of various navigation sensors which have a complementary characteristics such as inertial measurement unit, star tracker, altimeter, velocimeter, and camera for terrain relative navigation to achieve the precision and autonomous navigation capability. The required performance of sensors has to be determined according to the landing scenario and mission requirement. In this paper, the specifications of navigation sensors are investigated through covariance analysis. The reference error model with 77 state vector and measurement model are derived for covariance analysis. The mission requirement is categorized as precision exploration with 90m($3{\sigma}$ ) landing accuracy and area exploration with 6km($3{\sigma}$ ), and the landing scenario is divided into PDI(Powered descent initiation) and DOI(Deorbit initiation) scenario according to the beginning of autonomous navigation. The required specifications of the navigation sensors are derived by analyzing the performance according to the sensor combination and landing scenario.

위성항법시스템 및 보강시스템의 구축 현황

  • Nam, Gi-Uk;Heo, Mun-Beom;Sim, Ju-Yeong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.5 no.1
    • /
    • pp.65-74
    • /
    • 2007
  • 현재 운용중인 전 세계적인 위성항법시스템(GNSS : Global Navigation Satellite System)은 미국의 GPS(Global Positioning System)와 러시아의 GLONASS(Global Navigation Satellite System)가 있다. 전 세계적으로 주로 사용되는 시스템은 GPS이며, GLONASS는 러시아의 경제사정 악화로 인하여 지속적인 위성발사가 이루어지지 못하고 있다. 추가적으로 추진되고 있는 위성항법시스템은 유럽의 갈릴레오(Galileo), 중국의 북두(Beidou), 일본의 JRANS(Japanese Regional Advanced Navigation System) 그리고 2006년 5월에 구축 프로젝트가 승인된 인도의 IRNSS(Indian Regional Navigation Satellite System)가 있다. 보강시스템의 경우, 미국 FAA(Federal Aviation Administration)는 광역오차보정시스템(WAAS)을 Raytheon사와 개발하였으며, 현재 착륙용 근거리오차보정시스템(LAAS)을 Raytheon사 및 Honeywell사와 함께 정부/산업체 공동개발 사업(GIP; Government Industry Partnership)으로 진행 중에 있다. 유럽은 EGNOS(European Geostationary Navigation Overlay Service)를 사용하고 있으며, 일본의 MSAT(MTSAT Satellite Based Augmentation System)와 인도의 GAGAN(GPS and GEO Augmented Navigation)은 추진 중이다. 이 글에서는 위성항법시스템과 위성항법 보강시스템의 현황을 살펴본다.

  • PDF

Design of Inertial Navigation System/Celestial Navigation System Navigation System for Horizontal Position Estimation and Performance Comparison Between Loosely and Tightly Coupled Approach (수평 위치정보 추정을 위한 관성/천측 항법시스템 설계 및 약결합/강결합 방식의 성능 비교)

  • Kiduck Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.58-71
    • /
    • 2023
  • This paper describes a navigation system design for horizontal position estimation using inertial measurement sensors and celestial navigation. In space, stars are widely spread objects in the celestial sphere and have been used mainly to obtain attitude information through star observation. However, it is also possible to obtain information about the horizontal position with the altitude of the star. It is called celestial navigation which is the same principle that former navigators used to locate themselves while sailing on the sea. In particular, in deep space where GPS is not available, it is important to obtain information on the location by making use of stars that are relatively easy to observe. Therefore, we introduce a navigation system that can estimate horizontal position and design two types of systems, loosely coupled and tightly coupled depending on how the measurements are utilized. It is intended to help in the future design of navigation system using celestial navigation by simulation studies that not only verify whether the system correctly estimates horizontal position but also comparing the performance of loosely and tightly coupled methods.

Analysis of Anti-Jamming Techniques for Satellite Navigation Systems (위성항법시스템을 위한 항재밍 기술 분석)

  • Kim, Ki-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1216-1227
    • /
    • 2013
  • GNSS(Global Navigation Satellite System) is now being widely used in both civilian and military applications where accurate positioning and timing information are required and it is considered as a representative convergence technique in IT-Military application techniques. However, GNSS has low sensitivity level of GNSS receivers and is vulnerable to jamming signal, since the signals come from the satellite located at approximately 20,000 Km above the earth. The studies for the anti-jamming techniques in military applications have been passively performed in the domestic, because the information related GNSS are dependent on the countries that have GNSS. In this paper, we show the effect of jammer ERP by analyzing the link budget of GPS J/S power as a function of distance between jammer and receiver. Also, we categorize the anti-jamming techniques based on the functional block diagram of GNSS receiver structure and analyze the recent anti-jamming GNSS products and their technologies developed in domestic and foreign countries.

Development of Navigation Computer for Small Satellites Using Integrated GPS/INS (소형위성용 GPS/INS 통합 항법 컴퓨터 개발)

  • Choi, Young-Hoon;Lee, Byung-Hoon;Chnag, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.393-398
    • /
    • 2008
  • This paper suggests a GPS/INS navigation computer architecture that can be applied to small satellites. In order to implement a GPS/INS navigation system on a small satellite, the extreme environment in space such as radiation, micro-gravity, vacuum, etc. must be considered. In addition, a real-time processing ability is required for the GPS/INS navigation system since the formation flying of multiple small satellites is the ultimate goal. The developed navigation electronics utilizes a PowerPC-type MPC860T that has space environment heritage, and a pair of Atmega128s that has been implemented in KAUSAT-2 and has completed the space environment verification tests. The navigation algorithm is designed to work in VxWorks environment, ported in MPC860T.

INS/Multi-Vision Integrated Navigation System Based on Landmark (다수의 비전 센서와 INS를 활용한 랜드마크 기반의 통합 항법시스템)

  • Kim, Jong-Myeong;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.671-677
    • /
    • 2017
  • A new INS/Vision integrated navigation system by using multi-vision sensors is addressed in this paper. When the total number of landmark measured by the vision sensor is smaller than the allowable number, there is possibility that the navigation filter can diverge. To prevent this problem, multi-vision concept is applied to expend the field of view so that reliable number of landmarks are always guaranteed. In this work, the orientation of camera installed are 0, 120, and -120degree with respect to the body frame to improve the observability. Finally, the proposed technique is verified by using numerical simulation.

Implementation and Flight Test Performance Analysis of vSLAM Aided Integrated Navigation System for Rotary UAV (vSLAM 보조 통합항법시스템 구현 및 무인 회전익기를 이용한 비행시험 성능분석)

  • Yun, Suk-Chang;Lee, Byoung-Jin;Yun, Suk-Hwan;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.362-369
    • /
    • 2011
  • In this paper, vSLAM aided integrated navigation system is implemented and performance analysis of the system is completed via flight test. The system can suppress divergence of position error of INS only system by updating vSLAM correction information when temporary GPS signal outage occurs in bad radio condition. In the flight test, integrated hardware containing GPS, IMU and camera is loaded under RC electric helicopter. Performance of the integrated navigation system is verified by comparing estimated position of INS/vSLAM system with that of INS only system.

GNSS Techniques for Enhancing Flight Safety of UAS (무인항공기 안전성 강화를 위한 위성항법시스템 적용 방안)

  • Park, Je-hong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.58-65
    • /
    • 2017
  • Global navigation satellite system (GNSS) has a weakness of signal integrity caused by broadcasting type data transmitting direct to user from navigation satellite. Loss of GNSS signal integrity can make a catastrophic event in the operation of unmanned aerial system (UAS) because position decision is only depended on GNSS. So it is required to apply alternative method to reduce a risk and to guarantee a GNSS signal integrity for UAS operation. This paper addressed the reason of loosing GNSS signal integrity, the effectiveness of signal jamming/spoofing and GNSS application trend for UAS. Also suggested the flight safety enhancing method in case of GNSS signal jamming for UAS as technical and political approaches.