• Title/Summary/Keyword: 항만 준설토

Search Result 39, Processing Time 0.027 seconds

A Preliminary Investigation on Pozzolanic Activity of Dredged Sea Soil (소성 준설토의 포졸란 반응성에 대한 기초 연구)

  • Kim, Ji-Hyun;Moon, Hoon;Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.531-536
    • /
    • 2014
  • Recently, the amounts of dredge sea soil in south Korea have been increasing because of various maintenance works at harbors and rivers. Dredged sea soil contains various contaminants. Hence, prior to recycling the dredged sea soil, the various contaminants should be removed to prevent a secondary contamination due to the leaching of hazardous chemicals. Pretreated dredged sea soil can be buried under the ground or used for land reclamation. In this study, however, pretreated dredged sea soil was used to investigate the level of pozzolanic activity. The properties of pretreated dredged sea soil were investigated, the method for heat treatment was determined, and the compressive strength of mortar using dredged sea soil was examined. According to the XRF result, the main components of dredged sea soil were $SiO_2$ of over 55%, and $Al_2O_3$ and $SO_3$ of some amounts. Results from XRD and TG/DTA showed that pretreated dredged sea soil can be used as a pozzolanic material. When dredged sea soil was thermally treated for 90 min at $550^{\circ}C$, a compressive strength result was similar to that of control mortar.

An Experimental Study on Consolidation Effect of Dredged and Reclaimed Ground with PBD using Seepage Pressure (침투압을 이용한 PBD 타입 준설매립 지반의 압밀 효과에 관한 실험적 연구)

  • Lee, Moo-Chul;Park, Min-Chul;Kim, Ju-Hyun;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.13-24
    • /
    • 2012
  • In this study, the in-situ model test has been conducted and used to estimate and analyze consolidation behavior of the ground by using the miniature test that reconstructs economically geotechnical behavior of in-situ full scale structure. To analogize the relation among effective stress, void ratio and coefficient of permeability at the self-weight consolidation stage, the low stress seepage consolidation test has been conducted and the involution function of constitutive equation had been obtained from the result of the curve fitted seepage consolidation test result. As a result of the numerical analysis that had been conducted on the representative section using a constitute equation, final settlement was similar with those of self-weight consolidation of the centrifugal model test. But, it was more or less smaller. It seems that these trends are caused by the difference between estimated values.

Shear Strength Characteristics of Artificial Soil Mixture with Pond Ash (매립석탄회가 혼합된 인공혼합토의 전단특성)

  • Kim, Kyoungo;Park, Seongwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.39-47
    • /
    • 2013
  • Recently, there have been various domestic construction activities related to the reclamation of the dredged soils to expand the land use. However, the reclaimed grounds made of the dredged soils cause various problems due to highly compressible and low shear strength nature. Particularly, this nature induces huge problems in case of the harbor facilities and road construction on the reclaimed sites. Furthermore, in the reclamation activities, the marine dredged soils are often used instead of the well sorted sand, which induces problems of compressibilities. Therefore, in this study, the mechanical characteristics of artificial soil mixture of kaolinite representing the marine dredged soils and the pond ash. A large consolidometer is designed and manufactured to produce the artificial soil mixture. To represent various mixing ratio between the fly ash and bottom ash in the pond ash, six samples with the same stress history are made with different mixing ratio among kaolinite, bottom ash and fly ash. Isotropically consolidated and undrained compression tests are performed to investigate the shear characteristics of soil mixtures. Based on the experimental results, as the components of mixed ash increase, the friction angle increase and the cohesion values decrease. Also, the porepressure parameters at failure, Af increase with the mixing components of the pond ash. The portion of bottom ash has more impact on the shear behavior than that of fly ash.

Development of Korean Environmental Windows using Entropy (엔트로피를 이용한 한국형 환경창 개발)

  • Jeong, Anchul;Oh, Sungryul;Kim, Seoungwon;Kim, Minseok;Jun, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.108-108
    • /
    • 2015
  • 준설이란, 물리적으로 수저의 퇴적물을 제거함으로써 하도관리에서 가장 확실하게 퇴적물을 제거하고 통수 단면적을 증가시킬 수 있는 방법 중 하나이다. 우리나라에서는 주로 해안이나 항만에서 주를 이루어져 왔으며, 하천에서는 주로 골재채취를 목적으로 하는 소규모 준설사업이 대부분이었다. 그러나 4대강 살리기 사업으로 인해서 건설된 다기능보는 수위 및 유량을 조절할 수 있다는 장점이 있는 반면, 흐름 및 유사의 연속성을 차단하여 유사퇴적이 발생할 가능성이 높아졌음으로 이를 위한 대책으로 유지준설이 이루어져야 한다. 준설은 대규모의 사업비가 투입되는 건설공사이면서, 수저의 퇴적물을 물리적으로 제거함에 따라 고탁도를 발생시키고 생태계를 교란시키는 등의 문제가 있다. 준설선진국인 미국의 경우, 이러한 문제점을 최소화하기 위한 일환으로 환경창(EWs; Environmental Windows)을 개발하여 미국 준설사업의 약 80%에 적용하여 관리하고 있다. 환경창이란, 준설 및 준설토 처분에 관한 작업이 이루어질수 있는 기간을 의미하여, 결정적으로 사회 환경적으로 준설에 따른 영향의 강도가 상대적으로 작은 기간을 선정하여 준설을 허용하는 기간이다. 본 연구에서는 이러한 환경창를 국내에 적용하기 위하여 어류, 조류, 친수시설 이용빈도, 홍수기를 이용하였다. 연구대상지역은 낙동강 유역의 금호강 합류점이며, 홍수기에는 준설하지 않는 것을 대전제로 하였다. 어류는 대표어종을 선정하여 연구를 진행하였고, 그 외 조류는 법적보호종인 흑두루미, 친수시설 이용빈도는 4대강 방문객 통계자료를 사용하였다. 엔트로피 가중치 산정방법을 통하여 각 속성별 가중치를 산정하여 최종적으로 한국형 환경창을 제시하였다. 본 연구에서 제시한 한국형 환경창은 기존의 환경창과 비교하였을 때, 영향의 정도를 수치로 표현하여 의사결정권자가 간편하게 환경창을 결정할 수 있도록 의사결정지원을 한다는 장점이 있다.

  • PDF

A Study on Leaching Characteristics Change for Sediment Dredging in Yongwon Channel, Busan New Port (부산신항 용원수로에서의 퇴적물 준설에 의한 용출특성 변화 연구)

  • Choo, Min Ho;Kim, Young Do;Jeong, Weon Mu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.541-547
    • /
    • 2017
  • In Yongwon channel, its natural flow of seawater is blocked by the construction of Busan Newport including the container berth. The channel was transformed into a narrow and long one, where it is possible that ships are only allowed to pass through the north-side channel of Gyeonmado located at the point of river mouth to Songjeongcheon. So it is considered that the changes in the terrain characteristics of Yongwon channel is likely to alter the circulation of sea water, thereby changing its water quality. Contaminants are accumulated from the sediment release. In this study, before and after dredging the sediment release test was performed. As a result, after the sediment dredging is performed, the reduction rate was higher at the same point. The results show that the water quality can be improved by dredging. Each group (A~C) reduction rate of the evaluation of the reduction rate of 4.64% T-N, 18.00%, 18.59%, respectively. T-P rate of 24.75% reduction, 24.17%, 44.08%, respectively. COD reduction rate was 18.57%, 19.76%, 38.08%, respectively. These results can be used as basic data for controlling the contamination by dredging in Yongwon channel.

Development of Eco-friendly Binder Using Waste Oyster Shells (친환경 굴껍질 고화재(R) 개발)

  • Gil-Lim 한국해양연구원, 연안항만공학본부;Chae Kwang-Suk;Paik Seung-Chul;Yoon Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.79-85
    • /
    • 2005
  • An experimental study was carried out to investigate the recycling possibility of waste oyster shells, which induce environmental pollutions by piling up out at the open or the temporary reclamation. The purpose of this study is to develope eco-friendly binder using waste oyster shells, and to reinforce dredged soils fur soft soil improvement. In this paper, a series of laboratory tests including compressive strength tests were performed to evaluate strength characteristics of soils treated by developed binder with different water content of dredged soils, mixing rates of binder, curing days. Based on test results, eco-friendly binders manufactured from waste oyster shells were estimated as good resource materials for soft soil improvements.

The Near-field Behavior of Effluent discharged from Confined Disposal Facility (제한투기시설에서 배출되는 여수의 근역거동)

  • 정대득;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.95-107
    • /
    • 2000
  • The primary purpose of dredging work is to maintain navigational readiness and to increase environmental amenity, so that the dredging project which is composed of excavating, removing, transporting, storing and disposing dredged material must be carefully managed to insure that dredging works are completed in a cost-effective and environmentally safe manner. The most important point in dumping operations is an estimating and reducing the impacts of discharges at the dumping area. One of the most effective method for the reduction of ecological impacts at dumping area is using the schematic process composed of the sophisticated plan, precise work and predicting/reducing the impacts based on the numerical model and field observation. In this study, the numerical model is used to predict the near-field spatial fate and begavior of effluent discharged from Confined Dumping Facility(CDF) located near coastal area. To to this purpose, reappearing of tidal current was preceded. The model is then applied to Mokpo harbor, where capital dredging and maintenance dredging are conducted simultaneously and the CDF is under construction;. In the series of model case study, we found that the near-field behavior of effluent discharged from CDF was governed by the receiving water condition, outfall geometry, characteristics of efflent and CDF operating conditions.

  • PDF

The Behavior of Effluent Discharged from the Confined Dumping Facility (제한투기시설에서 배출되는 여수의 거동)

  • 정대득;이중우
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.429-439
    • /
    • 2000
  • The primary purpose of dredging work is to maintain navigational readiness and to increase environmental amenity. Therefore the dredging project, which is composed of excavating, removing, transporting and storing or dumping dredged material, must be carefully managed to insure that dredging works are completed in a cost-effective and environmentally safe method. The most important point in dumping operations is evaluating and decreasing the impacts of dumping works at the dumping area. One of the most effective method for this purpose is using the schematic process composed of the sophisticate plan, precise work and predicting/reducing the impacts based on an numerical model being closely linked with field observation. In this study, a numerical model is used to predict the spatial transport and fate of the effluent discharged from the confined dumping facility(CDF) located at a coastal area. To achive this purpose, numerical models were used for reappearing the tidal current of concerned area. These models were then applied to Mokpo harbpr where capital dredging and maintenance dredging are being conducted simultaneously and the CDF is under construction. In series of model case study, we found that the effluent discharged from CDF was governed by the receiving water condition and outfall geometry, so that limit of near-field was 14∼500 meter down stream and 4∼150 meter in transverse direction. dilution ranged from 1.1 to 8.2 on the cases. Long-term diffusion characteristics was governed by the dilution rate during near-field behavior, ambient conditions and CDF operation modes.

  • PDF

Comparative Evaluation on Geotechnical Information 3D Visualization Program for Dredging Quantity Estimation (준설 물량 산출을 위한 지반정보 3차원 가시화 프로그램 비교 평가)

  • Lee, Boyoung;Hwang, Bumsik;Kim, Han-Saem;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.35-42
    • /
    • 2016
  • There are many reclamation projects domestically and internationally which requires large quantity of reclaimable materials. To provide enough reclaimable soils which are limited in land, there have been various research focusing on the dredged soils in the marine environments. As a part of this research, a GIS based 3D dredging reclamation visualization program was developed for the volume estimation of dredged soils in 2015. The developed program is based on the digitized spatial information of the site investigation data with a consideration of the reliability of the data. Prior to the validation with the comparisons with the actual dredged volume measurement data, the developed program was compared with the commercial 3D visualization program with 3D visualized results from the test site near the Gunjang harbor. The validation of the developed program was performed in terms of the degree of visualized precision, the sectional and profiling of soil layers and the dredged volume estimation results. Based on the comparisons, both commercial and developed program show similar dredged volume with minor discrepancies in soil layers.

Korean Environmental Standards for Beneficial Use of Dredged Materials (준설토 유효활용을 위한 한국형 환경기준 개발)

  • Yoon, Gil-Lim;Lee, Chan-Won;Jeong, Woo-Seob
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.5-13
    • /
    • 2008
  • This paper proposed an environmental standard far beneficial use of dredged materials currently considered as waste materials. In Korea, even though chemical analysis of sediments are carried out frequently, their analysis results were not interrelated with the effects of biological lives due to a shortage of data, which may result in difficulty to develope Korean standards for reusing dredged materials. For these, this paper first searched existing foreign standards, analyzed local contaminated sediment data, identified their main components of contaminations and then compared clean-up standards of sediments consisting of lower and higher level. From these analyses new environmental standards considering Korean domestic circumstances are proposed. It is judged that newly proposed standards are appropriate in terms of both Korean national sedimental environments and economical recycling aspects because environmental standard levels proposed are higher than background level of sediments in Korea and foreign country's standards, where many experiences and environmental monitoring works have been already performed.