• Title/Summary/Keyword: 항공라이다측량

Search Result 27, Processing Time 0.024 seconds

A Study on the Evaluation of Airborne Lidar Height Accuracy for Application of 3D Cadastral (3차원지적 적용을 위한 항공라이다의 수직 정확도 평가에 관한 연구)

  • Choi, Byoung Gil;Na, Young Woo;Lee, Kyung Sub;Lee, Jung Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.33-40
    • /
    • 2014
  • At present, Cadastral map of 2 dimensional is in the stream of changing it to 3 dimensional type supported by GPS and laser techniques. In addition, this steam can be explained at the same time with improvement of equipment of storing much information, support of equipment for imaginative 3D spatial information, and support of equipment of expressing land in 3D Cadastral. This study suggest to apply airborne lidar survey technique on cadastral map to acquire comparably and quickly detailed height of ground. For doing this, this study checked out credibility regarding accuracy of airborne lider survey. After choosing research area, this study has done the airborne lidar survey and acquire the result after surveying Cadastral Comparison Point to check out the accuracy of acquired results. In addition, this study check out the result of Cadastral Comparison Point and airborne lidar survey applied by paired sample t-test based on actual results. The result is that test statistics is 0.322 which is 5 % similar level and null hypothesis cannot be rejected, so this study found out that result of both survey ways are the same. Therefore, the result of airborne lidar survey can be utilized to build up 3D Cadastral information hereafter.

The Study on Reconnaissance Surveying Using Terrestrial Laser Scanner (지상 라이다를 활용한 현황측량 연구)

  • Lee, In-Su;Kang, Sang-Gu
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.79-86
    • /
    • 2006
  • Nowadays 3D terrestrial laser scanners record high precision three-dimensional coordinates of numerous points on an object surface in a short period of time. So terrestrial laser scanner is applied to a wide variety of fields including geodesy, and civil engineering, archaeology and architecture, and emergency service and defence, etc. This study deals with the potential application of terrestrial laser scanner in the reconnaissance surveying. The results shows that terrestrial laser scanner is possible to extract the linear features and the positioning accuracy of objects measured by total station surveying is comparative to that by terrestrial laser scanner. Thereafter, it is expected that the potential applications of terrestrial laser scanning will be more increased by combining terrestrial laser scanners with airborne LiDAR (Light Detection And Ranging) and photogrammetric technology.

  • PDF

Study on the Method of Extracting Unregistered Islands using LiDAR Data (항공라이다 데이터를 이용한 미등록 섬 추출 연구)

  • Wie, Gwang-Jae;Yun, Hong-Sik;Kang, Sang-Gu;Kang, In-Gu
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.109-114
    • /
    • 2009
  • Although island is great worth in ecology, environmental conservation and important territory as a national land for developing the marine, the bottom of the sea and also ecological studying field for the ages to come, it has not been managed because of lack of a scientific surveying. In the case of a cadastral record, inaccessible islands have not been registered in current cadastral record because of the limit of surveying technology in 1910. Therefore, a scientific investigation and systematic management about unregistered islands are necessary. But, a airborne laser scanning system is possible to acquire an accurate positions with digital images about inaccessible islands. Therefore, scientific detection of unregistered islands became possible. This paper presented the results of the shoreline extraction around the Heuksan island using Lidar data and the detection of unregistered islands comparing the cadastral map to the ortho-image. Also, we presented the extraction technique of unregistered islands by calculating their positions and areas. As a result, we extracted effectively 16 unregistered islands around the Heuksan island.

  • PDF

A Study on the Application of River Surveying by Airborne LiDAR (항공라이다의 하천측량 적용 방안 연구)

  • Choi, Byoung Gil;Na, Young Woo;Choo, Ki Hwan;Lee, Jung Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.25-32
    • /
    • 2014
  • The river plan executes the role for prevention of disaster and protection of environment, and requires the surveying results with high accuracies for managing river, dam, reservoir which will be the major infrastructures. The purpose of this study is for comparing and analyzing the results of river surveying which is used widely for disaster management and construction industry support. The results are gathered by using LiDAR which is being used in Korea recently and by using Total station. Study area is chosen at upper area of Bukhan River which is located at Gangwon-do. Total 2 cross-sections of the two methods are extracted from the study area. The standard deviation of land part is about 0.017m which shows little difference between two methods, but the Airborne LiDAR results cannot survey the heights of the points accurately at the singular points with vertical structure and water body part. To overcome the problems through this study, there should be ways to survey the bottom river through transmission of water level within the same margin scope as land part and to survey detailed facilities used by laser exactly through continuous research and experiment. When implementation stage comes, this study expect that this document will be utilized variously for making decision in the area of planning and drawing of business and engineering not just for river regarding the major area or the area that people cannot access.

Automatic Matching of Digital Aerial Images using LIDAR DATA (라이다데이터를 이용한 디지털항공영상의 자동정합기법)

  • Min, Seong-Hong;Yoo, Byoung-Min;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.751-760
    • /
    • 2009
  • This research aims to develop the strategy and method to enhance the reliability of image matching results and improve the efficiency of the matching process by utilizing LIDAR data in the main image matching processes. In this work, we present the methods to utilize LIDAR data in the selection of matching entities, the search for the matched entities and the evaluation of the matching results. The proposed method has been applied to medium-resolution digital aerial images and LIDAR data acquired at the same time. The results have been analyzed in comparison with an existing method using a virtual horizontal surface rather than LIDAR DEM. This analysis indicates that the proposed method can show significantly more improved performance than the existing method. The results of this study can contribute to the improvement of the currently available commercial image matching software and the enhancement of the DEM derived from LIDAR data and matching results.

Accuracy Assessment of Orthophotos Automatically Generated by Commercial Software (상용 소프트웨어를 통해 자동 생성된 정사영상의 정확도 평가)

  • Choi, Kyoung-Ah;Park, Sun-Mi;Lee, Im-Pyeong;Kim, Seong-Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.415-425
    • /
    • 2007
  • In this study, we generated an orthophoto with both LIDAR data and aerial images and compared it with that generated from only the images. For the accuracy assessment of these orthophotos, we performed not only qualitative analysis based on visual inspection but also quantitative analysis by measuring horizontal inconsistency, boundary coordinates and similarity measures on buildings. Based on the visual inspection and horizontal inconsistency, the orthophoto based on LIDAR DSM appeared to be more closer to a true-orthophoto. However, the analysis on measurements of boundary coordinates and similarity measures indicates that the orthophoto based on LIDAR DSM is more vulnerable to double mapping on occluded areas. Accordingly, if we apply an effective solution on double mapping or use only the central areas of the aerial images where occluded areas are rarely founded, we can generate automatically true-orthophotos based on a LIDAR DSM.

Geometric Modeling and Data Simulation of an Airborne LIDAR System (항공라이다시스템의 기하모델링 및 데이터 시뮬레이션)

  • Kim, Seong-Joon;Min, Seong-Hong;Lee, Im-Pyeong;Choi, Kyung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.311-320
    • /
    • 2008
  • A LIDAR can rapidly generate 3D points by densely sampling the surfaces of targets using laser pulses, which has been efficiently utilized to reconstruct 3D models of the targets automatically. Due to this advantage, LIDARs are increasingly applied to the fields of Defense and Security, for examples, being employed to intelligently guided missiles and manned/unmanned reconnaissance planes. For the prior verification of the LIDAR applicability, this study aims at generating simulated LIDAR data. Here, we derived the sensor equation by modelling the geometric relationships between the LIDAR sub-modules, such as GPS, IMU, LS and the systematic errors associated with them. Based on this equation, we developed a program to generate simulated data with the system parameters, the systematic errors, the flight trajectories and attitudes, and the reference terrain model given. This program had been applied to generating simulated LIDAR data for urban areas. By analyzing these simulated data, we verified the accuracy and usefulness of the simulation. The simulator developed in this study will provide economically various test data required for the development of application algorithms and contribute to the optimal establishment of the flight and system parameters.

LiDAR Analysis Using GPS Observation Station (상시관측소를 이용한 항공레이저측량 분석)

  • Yun, Hee-Cheon;Chang, Si-Hoon;Lee, Gun-Ho;Min, Seung-Hyun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.257-258
    • /
    • 2010
  • Recently data, which are obtained by the airborne laser scanner system have been utilized to rapidly obtain three-dimensional location coordinates for a large area. According to operation regulation, the distance between a GPS base station and a aircraft GPS is fixed within a radius of 30km. In this paper, we compare data obtained by GPS observation station operated in National Geographic Information Institute with those obtained by GPS base station for making a airborne laser survey.

  • PDF

A Study on the Integration of Airborne LiDAR and UAV Data for High-resolution Topographic Information Construction of Tidal Flat (갯벌지역 고해상도 지형정보 구축을 위한 항공 라이다와 UAV 데이터 통합 활용에 관한 연구)

  • Kim, Hye Jin;Lee, Jae Bin;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.345-352
    • /
    • 2020
  • To preserve and restore tidal flats and prevent safety accidents, it is necessary to construct tidal flat topographic information including the exact location and shape of tidal creeks. In the tidal flats where the field surveying is difficult to apply, airborne LiDAR surveying can provide accurate terrain data for a wide area. On the other hand, we can economically obtain relatively high-resolution data from UAV (Unmanned Aerial Vehicle) surveying. In this study, we proposed the methodology to generate high-resolution topographic information of tidal flats effectively by integrating airborne LiDAR and UAV point clouds. For the purpose, automatic ICP (Iterative Closest Points) registration between two different datasets was conducted and tidal creeks were extracted by applying CSF (Cloth Simulation Filtering) algorithm. Then, we integrated high-density UAV data for tidal creeks and airborne LiDAR data for flat grounds. DEM (Digital Elevation Model) and tidal flat area and depth were generated from the integrated data to construct high-resolution topographic information for large-scale tidal flat map creation. As a result, UAV data was registered without GCP (Ground Control Point), and integrated data including detailed topographic information of tidal creeks with a relatively small data size was generated.

Comparative Analysis and Accuracy Improvement on Ground Point Filtering of Airborne LIDAR Data for Forest Terrain Modeling (산림지형 모델링을 위한 항공 라이다 데이터의 지면점 필터링 비교분석과 정확도 개선)

  • Hwang, Se-Ran;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.641-650
    • /
    • 2011
  • Airborne LIDAR system, utilized in various forest studies, provides efficiently spatial information about vertical structures of forest areas. The tree height is one of the most essential measurements to derive forest information such as biomass, which can be estimated from the forest terrain model. As the terrain model is generated by the interpolation of ground points extracted from LIDAR data, filtering methods with high reliability to classify reliably the ground points are required. In this paper, we applied three representative filtering methods to forest LIDAR data with diverse characteristics, measured the errors and performance of these methods, and analyzed the causes of the errors. Based on their complementary characteristics derived from the analysis results, we have attempted to combine the results and checked the performance improvement. In most test areas, the convergence method showed the satisfactory results, where the filtering performance were improved more than 10% in maximum. Also, we have generated DTM using the classified ground points and compared with the verification data. The DTM retains about 17cm RMSE, which can be sufficiently utilized for the derivation of forest information.