• Title/Summary/Keyword: 항공기 형상

Search Result 331, Processing Time 0.023 seconds

Aeroelastic Tailoring of a Forward-Swept Wing Using One-dimensional Beam Analysis (1차원 보 해석을 활용한 전진익 항공기의 복합적층 날개 공력탄성학적 테일러링)

  • Choi, JaeWon;Lim, ByeongUk;Lee, SiHun;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.555-563
    • /
    • 2020
  • Foward-swept wings are known to possess superior aerodynamic performance compared to the conventional straight wings. However major concerns regarding forward-swept wings include divergence at lower airspeeds which require careful consideration at the design stage. As an endeavor to overcome such drawbacks, aeroelastic tailoring is attempted. In order to find an optimal ply sequence, recursive aeroelastic analyses is conducted and one-dimensional beam analysis coupled with simple aerodynamics is used for the improved computational efficiency and modelling convenience. The analysis used in this paper, DYMORE and analytic formula, both use one-dimensional beam model for the structure. Cross-sectional analysis for multi-cell NACA0015 airfoil section is conducted using VABS and oblique function is used for the sweep angle. Throughout the present aeroelastic tailoring, the maximum divergence speed of 290.2m/s is achieved which is increased by approximately 43% than that for the conventional ply configuration.

Reconfiguration Control Using LMI-based Constrained MPC (선형행렬부등식 기반의 모델예측 제어기법을 이용한 재형상 제어)

  • Oh, Hyon-Dong;Min, Byoung-Mun;Kim, Tae-Hun;Tahk, Min-Jea;Lee, Jang-Ho;Kim, Eung-Tai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • In developing modern aircraft, the reconfiguration control that can improve the safety and the survivability against the unexpected failure by partitioning control surfaces into several parts has been actively studied. This paper deals with the reconfiguration control using model predictive control method considering the saturation of control surfaces under the control surface failure. Linearized aircraft model at trim condition is used as the internal model of model predictive control. We propose the controller that performs optimization using LMI (linear matrix inequalities) based semi-definite programming in case that control surface saturation occurs, otherwise, uses analytic solution of the model predictive control. The performance of the proposed control method is evaluated by nonlinear simulation under the flight scenario of control surface failure.

Study on Vibration Characteristics in Terms of Airfoil Cross-Sectional Shape by using Co-Rotational Plane Beam Transient Analysis (Co-Rotational 보의 과도상태해석을 이용한 에어포일 단면 형상 변화에 따른 진동특성 연구)

  • Kim, Se-Ill;Kim, Yong-Se;Park, Chul-Woo;Shin, Sang Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.389-395
    • /
    • 2016
  • In this paper, vibration characteristics in terms of the airfoil cross-sectional shape was examined by using the EDISON co-rotational plane beam-transient analysis. Co-Rotational plane beam analysis is appropriate for large rotation and small strain. Assuming aircraft wing as a cantilevered beam, natural frequencies of each airfoil cross-sectional shape were estimated using VABS program and fast Fourier transformation(FFT). VABS conducts finite element analysis on the cross-section including the detailed geometry and material distribution to estimate the beam sectional properties. Under the same airfoil geometric configuration and material selection, variation of material induced difference in the deflection and natural frequencies. It was observed that variation of the natural frequency was dependent on variation of the airfoil shape and material.

Design of a VHF-UHF Band Blade Antenna for Aircraft Applications (VHF-UHF 대역 항공기용 블레이드 안테나 설계)

  • Go, Jooseoc;Hur, Jun;Kay, Youngchul;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.619-627
    • /
    • 2014
  • In this paper, we designed a blade antenna for VHF-UHF band(500 MHz~3 GHz) to be used as aircraft antennas. Unlike previously reported researches that use high-dielectric materials and insert rectangular extended grounds, the antenna structure was designed by optimizing the curvature of both a radiator and an extended ground whose shape is varied by changing the exponent of an n-th polynomial. Based on the optimized structure, we measured impedance matching and gain performances to evaluate the antenna in the VHF-UHF band(500 MHz~3 GHz). As a result, we confirmed that the antenna shows matching characteristics of less than -6 dB and has average gains of greater than -5 dBi in the entire VHF-UHF band.

Conceptual design and sensitivity analysis of a tilt + stopped rotor type eVTOL using motor weight estimation formula and iterative design (모터중량 추정식과 반복 설계를 통한 틸트+정지로터형 eVTOL 개념설계 및 민감도 분석)

  • Ju-heon Lee;Taejong Kim;Seo-yoon Jang;Hui-su Jo;Ho-Yon Hwang
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.77-95
    • /
    • 2023
  • In this study, the conceptual design of a tilt + stopped rotor type electric vertical take-off and landing (eVTOL) aircraft was performed using design iteration. Based on Hyundai Motor's S-A1, the mission profile was defined using the concept of urban air mobility (UAM), and configuration design and aerodynamic analysis were performed using OpenVSP and XFLR5 software. After estimating the required power for the designed eVTOL, the required performance of the battery and the maximum take-off weight (MTOW) were calculated. . It was iteratively calculated using Microsoft Excel and Visual Basic Application, and a new electric motor weight estimation formula was derived. Also, the sensitivity analyses of each design variables of an eVTOL was performed using the automated program.

NC 가공을 위한 곡면 모델링에 관한 연구

  • 성원징;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.356-362
    • /
    • 1991
  • 자동차, 항공기, 선박등과 같은 산업제품과 전화기, TV브라운관과 같은 가전제품, 심미적 기능을 갖는 제품등과 같은 일상용품등은 많은 부분이 자유곡면(sculptured surface)으로 이루어져 있다. 이러한 해석적으로 정의 하기 어려운 제품 또는 그것을 생산하는데필요한 금형을 가공하는데 있어서 기존에는 석고 모형이나 목형을 이용한 모방 절삭을 하였다. 그러나 근래에는 자유곡면으로이루어진 제품을 설계하고 가공하는데 있어서 CAD/CAM system을 이용하고 있다. 제품의 곡면을 표현하거나 이들을 NC가공하기 위해서는 곡면을 나타내는 형상 정보가 필요 하고 이들 형상정보로 곡면모델링을 하여공구 경로를 구한다. 그러므로 이들 형상정보를 허용한도내에서 적절히 정하여 실제형상에 가까운 곡면을 형성하여야 한다. CAD/CAM 기술의 발달에 따라 다양한 형태의 곡면을 형성하는 기능을 가진 system이 많이 출현되었고 점토, 석고 또는 나무등으로 만든 physical model로 부터 얻어진 형상정보에 의해 surface fitting을 함으로서 자유곡면을 표현하는 방법이 많이 사용되고 있다. 어떠한 곡면을 표현할때는 곡면의 특성을 잘 표현하면서 전체적으로 smooth 한 것이 바람직하다. 그러므로 곡면의 형태를 설계자가 쉽게 이해할 수 있고 적은 수의 patch로도 복잡한 형상을 나타내야 하며 또한 국부적으로 수정이 용이하여야한다. 본 논문에서는 자유곡면을 나타낼 수 있는 수학적 표현 방법에 관하여 논하고, 해석적 곡면으로 부터 형상정보를 얻어 곡면 모델링을 한 후의 Ferguson곡면, UBS와 NUBS의 차이점을 분석하고, 이들 곡면과 해석적 곡면으로부터 얻은 실제곡면과의 오차를 측정하여 실제형상에 가까운 모델링 곡면을 찾고자 하였다.. 라. MCl(M:K$^{+}$, $Na^{+}$, NH$_{4}$$^{+}$ 및 H$^{+}$) 수용액 메디움에서의 Cd(II), Mg(II) 및 Zn(II)의 Dowex 1-X8, Cl$^{-}$ 수지에 대한 흡착은 역시 어떤 메디움에서도 Cd(II) 흡착이 제일 크며, 다음이 Zn(II) 이고 착이온을 형성않는 Mg(II)이 제일 작았다. 한편 메디움 종류별 D값의 크기순위는 H$^{+}$>K$^{+}$> $Na^{+}$>NH$_{4}$$^{+}$이였다. 메디움의 종류에 따라 D값의 차이가 나는 것은 금속이온의 착이온 형성과 금속이온의 용액내에서의 이온종의 상태와 관련이 있다고 생각된다. 마. MCl(M:K$^{+}$, $Na^{+}$, NH$_{4}$$^{+}$ 및 H$^{+}$)과 MNO$_{3}$ 용리액에 의한 Cd(II), Mg(II) 및 Zn(II)의 용리는 예상한 바와 같이 MCl에서 작은 Dv 값을 갖는데, 이것은 CdCl$_{4}$$^{2-}$ 착이온을 형성하거나 ZnCl$_{4}$$^{2-}$ , ZnCl$_{3}$$^{-}$같은 이온과 MgCl$^{+}$, MgCl$_{2}$같은 이온종을 형성하기 때문인것 같다. 한편 어떠한 용리액에서던지 N

Intake Performance Characteristics according to S-duct Cross-section Shape in UAV (무인기 S형 흡기구의 단면 형상에 따른 흡기구 성능 특성)

  • Eom, Hee-Ok;Bae, Ji-Yeul;Lee, Namkyu;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.107-114
    • /
    • 2019
  • In many military aircraft, s-shaped diffusers are used to prevent the fan blades of the turbofan engine from being exposed to the outside. The inlet configurations of the air intakes for military aircraft vary, such as the rectangular intake of the F-22, the crescent-like intake of the F-16, elliptical intake of the MQ-25. In this study, the aerodynamic performance of s-shaped diffusers with various inlet configurations was evaluated using numerical analysis. In addition, the configuration of the middle section of an s-shape duct was changed to the crescent shape, and the effects on its aerodynamic performance were investigated. As a result, there was a slight difference in total pressure recovery according to various inlet configurations with ellipse-shaped middle sections. Also, the total pressure distortion was the lowest in the rectangular inlet shape. When the configuration of the middle section was changed from an ellipse to a crescent shape, the total pressure recovery remained at a high level, except for the ellipse-shaped inlet configuration. In terms of total pressure distortion, the duct with the crescent-shaped middle section showed a significantly more uniform pressure distribution than that with the ellipse-shaped middle section.

Aerodynamic Design of EAV Propeller using a Multi-Level Design Optimization Framework (다단 최적 설계 프레임워크를 활용한 전기추진 항공기 프로펠러 공력 최적 설계)

  • Kwon, Hyung-Il;Yi, Seul-Gi;Choi, Seongim;Kim, Keunbae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.173-184
    • /
    • 2013
  • A multi-level design optimization framework for aerodynamic design of rotary wing such as propeller and helicopter rotor blades is presented in this study. Strategy of the proposed framework is to enhance aerodynamic performance by sequentially applying the planform and sectional design optimization. In the first level of a planform design, we used a genetic algorithm and blade element momentum theory (BEMT) based on two-dimensional aerodynamic database to find optimal planform variables. After an initial planform design, local flow conditions of blade sections are analyzed using high-fidelity CFD methods. During the next level, a sectional design optimization is conducted using two dimensional Navier-Stokes analysis and a gradient based optimization algorithm. When optimal airfoil shape is determined at the several spanwise locations, a planform design is performed again. Through this iterative design process, not only an optimal flow condition but also an optimal shape of an EAV propeller blade is obtained. To validate the optimized propeller-blade design, it is tested in wind-tunnel facility with different flow conditions. An efficiency, which is slightly less than the expected improvement of 7% predicted by our proposed design framework but is still satisfactory to enhance the aerodynamic performance of EAV system.

Shape Optimization for Enhancing the Performance of an Inducer for the Main Hydraulic Pump in a Rotary Wing Aircraft (회전익 항공기 주유압펌프용 인듀서 성능 향상을 위한 형상최적설계)

  • Kim, Hyogyeum;Heo, Hyeungseok;Park, Youngil;Lee, Changdon
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, in order to prevent cavitation in a variable swash-plate type hydraulic pump, a basic model impeller has been applied to a new pump, and the impeller shape has been optimized through flow analysis. Based on the analysis results, we could propose an impeller shape with high efficiency and low possibility of cavitation in comparison with the basic model. The simplification of the basic shape of the impeller of the hydraulic pump was performed in three parts in the order of hub shape, wing, and curvature, and eight design parameters were defined to satisfy the design requirement. Compared with the initial model of the impeller, when the differential pressure of the optimum model increased, the efficiency was improved. It achieved the goal of design improvement because cavitation did not occur under the rated operating conditions.

A Method for Reduction in Ground Turbulence by the Constructions in the Vicinity of Runway (활주로 주변 건물로 인하여 발생되는 Ground Turbulence 감소 방안)

  • Hong, Gyo-Young;Sheen, Dong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.820-830
    • /
    • 2009
  • This paper illustrates how simulation modeling can be reduced of ground turbulence by the constructions in the vicinity of airport runway and reports on a cause of ground turbulence using two-dimensional CFD analysis. Interesting result is that the shape in cross-section show the higher ground turbulence than the height of the building. The predicted results confirmed reduction of wind-effect by doing that set up the building with a fence, terraced shape or gap and it can generate turbulence in embryo at this stage. We knows that cross-wind effect in the vicinity of airport runway is highly dependent on the shape of the buildings.

  • PDF