• Title/Summary/Keyword: 항공기프레임

Search Result 49, Processing Time 0.026 seconds

A Study on Generation of Free Stereo Mosaic Image Using Video Sequences (비디오 프레임 영상을 이용한 자유 입체 모자이크 영상 제작에 관한 연구)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Park, June-Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.453-460
    • /
    • 2009
  • For constructing 3D information using aerial photograph or video sequences, left and right stereo images having different viewing angle should be prepared in overlapping area. In video sequences, left and right stereo images would be generated by mosaicing left and right slice images extracted in consecutive video sequences. Therefore, this paper is focused on generating left and right stereo mosaic images that are able to construct 3D information and video sequences could be made for the best use. In the stereo mosaic generation, motion parameters between video sequences should be firstly determined. In this paper, to determine motion parameters, free mosaic method using geometric relationship, such as relative orientation parameters, between consecutive frame images without GPS/INS geo-data have applied. After determining the motion parameters, the mosaic image have generated by 4 step processes: image registration, image slicing, determining on stitching line, and 3D image mosaicking. As the result of experiment, generated stereo mosaic image and analyzed result of x, y-parallax have showed.

Orientation Analysis between UAV Video and Photos for 3D Measurement of Bridges (교량의 3차원 측정을 위한 UAV 비디오와 사진의 표정 분석)

  • Han, Dongyeob;Park, Jae Bong;Huh, Jungwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.451-456
    • /
    • 2018
  • UAVs (Unmanned Aerial Vehicles) are widely used for maintenance and monitoring of facilities. It is necessary to acquire a high-resolution image for evaluating the appearance state of the facility in safety inspection. In addition, it is essential to acquire the video data in order to acquire data over a wide area rapidly. In general, since video data does not include position information, it is difficult to analyze the actual size of the inspection object quantitatively. In this study, we evaluated the utilization of 3D point cloud data of bridges using a matching between video frames and reference photos. The drones were used to acquire video and photographs. And exterior orientations of the video frames were generated through feature point matching with reference photos. Experimental results showed that the accuracy of the video frame data is similar to that of the reference photos. Furthermore, the point cloud data generated by using video frames represented the shape and size of bridges with usable accuracy. If the stability of the product is verified through the matching test of various conditions in the future, it is expected that the video-based facility modeling and inspection will be effectively conducted.

Development of a Multidisciplinary Design Framework for Urban Air Mobility (도심 항공 모빌리티의 다학제 설계 프레임워크 개발)

  • Kim, Hyunsoo;Kim, Hyeongseok;Lim, Daejin;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.583-590
    • /
    • 2022
  • This paper presents a framework, MADAM(Multidisciplinary Analysis and Design for Advanced Mobility). For the actual UAM operation, not only aircraft performances but also demand, cost and flight scenarios are in connection; the overall framework is essential for the multidisciplinary design. In this study, the framework is developed and introduced. Demand and cost analysis of Gimpo-Samseong line in the Seoul area using the framework is conducted as an example result. Also, future ticket prices are estimated by applying changes in the aspects of major cost components and the price, ₩76,000, is calculated with the target for maximizing the total profit in the year 2035.

Ramp Activity Expert System for Scheduling and Co-ordination (공항의 계류장 관리 스케줄링 및 조정을 위한 전문가시스템)

  • Jo, Geun-Sik;Yang, Jong-Yoon
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 1998
  • In this paper, we have described the Ramp Activity Coordination Expert System (RACES) which can solve aircraft parking problems. RACES includes a knowledge-based scheduling problem which assigns every daily arriving and departing flight to the gates and remote spots with the domain specific knowledge and heuristics acquired from human experts. RACES processes complex scheduling problem such as dynamic inter-relations among the characteristics of remote spots/gates and aircraft with various other constraints, for example, custome and ground handling factors at an airport. By user-driven modeling for end users and knowledge-driven near optimal scheduling acquired from human experts, RACES can produce parking schedules of aircraft in about 20 seconds for about 400 daily flights, whereas it normally takes about 4 to 5 hours by human experts. Scheduling results in the form of Gantt charts produced by the RACES are also accepted by the domain experts. RACES is also designed to deal with the partial adjustment of the schedule when unexpected events occur. After daily scheduling is completed, the messages for aircraft changes and delay messages are reflected and updated into the schedule according to the knowledge of the domain experts. By analyzing the knowledge model of the domain expert, the reactive scheduling steps are effectively represented as rules and the scenarios of the Graphic User Interfaces (GUI) are designed. Since the modification of the aircraft dispositions such as aircraft changes and cancellations of flights are reflected to the current schedule, the modification should be notified to RACES from the mainframe for the reactive scheduling. The adjustments of the schedule are made semi-automatically by RACES since there are many irregularities in dealing with the partial rescheduling.

  • PDF

Aerodynamic Design of EAV Propeller using a Multi-Level Design Optimization Framework (다단 최적 설계 프레임워크를 활용한 전기추진 항공기 프로펠러 공력 최적 설계)

  • Kwon, Hyung-Il;Yi, Seul-Gi;Choi, Seongim;Kim, Keunbae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.173-184
    • /
    • 2013
  • A multi-level design optimization framework for aerodynamic design of rotary wing such as propeller and helicopter rotor blades is presented in this study. Strategy of the proposed framework is to enhance aerodynamic performance by sequentially applying the planform and sectional design optimization. In the first level of a planform design, we used a genetic algorithm and blade element momentum theory (BEMT) based on two-dimensional aerodynamic database to find optimal planform variables. After an initial planform design, local flow conditions of blade sections are analyzed using high-fidelity CFD methods. During the next level, a sectional design optimization is conducted using two dimensional Navier-Stokes analysis and a gradient based optimization algorithm. When optimal airfoil shape is determined at the several spanwise locations, a planform design is performed again. Through this iterative design process, not only an optimal flow condition but also an optimal shape of an EAV propeller blade is obtained. To validate the optimized propeller-blade design, it is tested in wind-tunnel facility with different flow conditions. An efficiency, which is slightly less than the expected improvement of 7% predicted by our proposed design framework but is still satisfactory to enhance the aerodynamic performance of EAV system.

KC-100 Full-scale Static Test System (KC-100 전기체 정적 구조시험 장치)

  • Shim, Jae-Yeul;Lee, Sang-Geun;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.7-18
    • /
    • 2012
  • Full-scale static test was introduced for the KC-100 aircraft which is domestic civil aircraft to be certified for the first time. Test requirement, test frame, and important test stystems such as loading system, counterbalance system, restraint system and jacking system are explained in detail. Especially, the way to satisfy compliance for the installation of test article and loading system is introduced by using check sheets for the installations. 15 Full-scale and 7 local test conditions were successfully completed and the test data was obtained.

Design of Flight Learning System Using Sketch-based Interface (스케치 인터페이스를 이용한 항공기동 학습 시스템 개발)

  • Kim, Sang-Jin;Park, Tae-Jin;Choy, Yoon-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.771-779
    • /
    • 2010
  • Sketch-based interface is used more and more in developing animation contents. Particularly, there has been a system where the user's sketch inputs are interpreted and presented as live motions. In this study¸ it is to design an animated flight learning system using sketch-based interface. Most of the flights include movements in three-dimensional space and have unique and complex flight patterns. In other words, the actual flight movements not only include acceleration and deceleration, rising and falling, straight or circular flying, but also may include combinations of two or more movements as they simultaneously occur such as accelerating while falling, or slowing down while rising, and so forth. And, currently existing flight learning animation system cannot present such complex flight patterns to the pilots of aircrafts or to those personnel for air-traffic controllers. Hence, it is to be shown in this study that unit-path sketch animation method can support quicker ways to create animations to present those complex flight movements, and requires lesser inputs compared to the existing frame-based animation method. Also, the flight learning system suggested uses the flight-route realization tasks to reflect complex flight patterns, and therefore creates animations close to real as possible.

Design of SW Framework for Airborne Radar Real-time Signal Processing using Modular Programming (모듈화를 활용한 항공기 레이다 실시간 신호처리 SW Framework 설계)

  • Jihyun, Lee;Changki, Lee;Taehee, Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.76-86
    • /
    • 2023
  • Radars used by air-crafts have two important characteristics; First, they should have a real-time signal processing system finishing signal processing before deadline while getting and processing successive in-phase and quadrature data. Second, they can cover a lot of modes including A2A(Air to Air), A2G(Air to Gound), A2S(Air to Sea), and Ground Map(GM). So the structure of radar signal processing SWs in modern airborne radars are becoming more complicate. Also, the implementation of radar signal processing SW needs to reuse common code blocks between other modes for efficiency or change some of the code blocks into alternative algorithm blocks. These are the reason why the radar signal processing SW framework suggested in this paper is taking advantage of modular programming. This paper proposes an modular framework applicable on the airborne radar signal processing SW maintaining the real-time characteristic using the signal processing procedures for A2G/A2S as examples.

Analysis of Indirect Lightning Impact on Aircraft Shielded Cable Structure in accordance with RTCA DO-160G Sec. 22 (항공기용 차폐 케이블의 구조에 따른 RTCA DO-160G Sec. 22 간접낙뢰 영향성 분석)

  • Sung-Yeon Kim;Tae-Hyeon Kim;Min-Seong Kim;Wang-Sang Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.35-45
    • /
    • 2023
  • In this paper, we analyze the influence of indirect lightning strikes based on the structure of shielded cables used in an aircraft and propose a cable structure to enhance shielding effectiveness. Cables in an aircraft account for the largest proportion among components and play a crucial role in connecting aircraft frames and electronic devices; thus, making them highly influential. In particular, indirect lightning strike noise can lead to malfunctions and cause damage in aircraft electronic equipment, making the utilization of shielded cables essential for mitigating damage caused by indirect lightning strike noise. We conducted an analysis of the impact of indirect lightning strikes on aircraft shielded cables considering factors, such as the presence of shielding layers, core, and insulation in the cable structure. Furthermore, we validated our findings through simulations and experiments by applying the internationally recognized standard for indirect lightning, RTCA DO-160G Sec. 22.

A Study on Beam Operation of an Airborne AESA Radar with Uniform Search Performance in Whole Scan Area (전 탐색 영역 균일 성능을 갖는 항공기 탑재 능동 위상 배열 레이더의 빔 운용 연구)

  • Ahn, Chang-Soo;Roh, Ji-Eun;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.740-747
    • /
    • 2012
  • An Active Electronically Scanned Array(AESA) radar required necessarily as the Fire Control Radar(FCR) of recent fighters has ununiform detection range with regard to scan angle due to scan loss. Although the compensation method of scan loss in an AESA radar with variable dwell time is investigated, the effectiveness of the method in a fighter FCR with multi-function such as search, track, and missile guidance within limited resources should be considered systematically. In this paper, uniform search performance of an AESA radar using variable dwell time with regard to scan angle is derived. We assumed the search load of 50 % for case without changing dwell time in fixed frame time and showed the fighter FCR requirement for multi-function is not satisfied because the search load for the uniform search performance should be increased by about 100 %. On the other hand, in case of increasing the frame time for the uniform search performance and search load of 50 %, degradation of the search performance is shown by 86.7 % compared with the former. Based on these analyses, the effective beam operation strategy on an airborne AESA radar with uniform search performance in whole scan area is described with consideration of frame time, search load and performance as a whole.