• Title/Summary/Keyword: 합성 제올라이트

Search Result 248, Processing Time 0.026 seconds

The Ion-Exchange Properties of Synthetic Zeolite A from Domestic Kaolin (국산 고령토로 합성한 제올라이트 A의 이온교환성)

  • 김영대;김면섭
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.91-98
    • /
    • 1981
  • Synthetic zeolite A was prerared from domestic Hadong kaolin with sodium hydroxide solution and their ion exchange isotherms of $K^+$, $NH^{4+}$, $Li^+$ and $Ag^+$ ion were presented. The optimum reaction conditions for synthetic zeolite A from calcinated kaolin were 2 fold excess of 2N sodium hydroxide solution, 10$0^{\circ}C$ and 8 hours. It was observed that before the crystallization of zeolite A the samples reacted with sodium hydroxide solution had rather higher ion exchange capacities than zeolite A. The $K^+$-$Na^+$ and $Ag^+$$Na^+$ ion exchange isotherms were signoidal. The initial selectivity series was in the order $Ag^+$$K^+$>$Na^+$>$NH_4$>$Li^+$. Between approximately 33 and 67% replacement of soium ions the selectivity series became $Na^>$ and above 67% became $Ag^+$>$K^+$. Evidence were also presented to demonstrate that 8 out of 12 sodium ions per pseudo unit cell were not easily replaceable by lithium ions and 4 out of 12 not easily replaceable by ammonium ions.

  • PDF

Synthesis of zeolite from power plant fly ash (화력발전소 비산회를 이용한 제올라이트합성)

  • 김재환;연익준;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • A study on the synthesis of zeolite from bituminous coal ESP fly ash as a raw material, which was emitted from the power plant, was carried out to reduce environmental problems and reuse of the industrial wastes. Bituminous coal fly ash was used as the source of silica and alumina. Zeolite was synthesized by hydrothermal reaction in aqueous NaOH solution with sodium aluminate as additive. The objective of this study is to elucidate the effect of several experimental variables on the synthesis of zeolite. The effects of preroasting temperature, mixing speed, leaching alkalinity, and molar ratio of Na$_{2}$O/SiO$_{2}$ and SiO$_{2}$/Al$_{2}$O of the products were investigated. The synthesized zeolite was proved to be NaA, which is known as 4A type, by comparing with SEM images, and X-ray diffraction analysis. And also we know that the transformation of zeolite A take places into other types of zeolites, i.e. Hydroxysodalite, zeolite P, with the variation of leaching alkalinity.

  • PDF

Adsorption of PCBs in Transformer Oil on Powder Activated Carbon and Synthetic Zeolite (활성탄과 합성 제올라이트를 이용한 폐절연유 내 PCBs 흡착)

  • Chu, Heon-Jik;Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.573-578
    • /
    • 2012
  • In this study, adsorption of polychlorinated biphenyls(PCBs) in transformer oil on powder activated carbon (PAC) and synthetic zeolite was evaluated. Adsorption characteristics of PCBs on the PAC and zeolite has been investigated in a batch system with respect to adsorbents amount and contact time. BET results showed 908 m2/g for PAC and 483 m2/g for zeolite. The adsorption capacity of PCBs increased with an increasing input amount of absorbent. The adsorption experimental results showed that PAC removed 90% of input PCBs in transformer oil while zeolite removed only 64%. Adsorption of PCBs to PAC and zeolite fit the Freundlich model well. The Freundlich parameter, Kf, for PAC and zeolite was 193.1 and 43.0 respectively, indicating that PAC is effect adsorbent for PCBs adsorption in transformer oil.

Removal Characteristics of Strontium and Cesium tons by Zeolite Synthesized from Fly Ash (석탄회로 합성한 제올라이트에 의한 Sr(II) 및 Cs(I) 이온의 제거 특성)

  • 감상규;이동환;문명준;이민규
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1061-1069
    • /
    • 2003
  • The adsorption behaviors of strontium and cesium ions on fly ash, natural zeolites, and zeolites synthesized from fly ash were investigated. The zeolites synthesized from fly ash had greater adsorption capabilities for strontium and cesium ions than the original fly ash and natural zeolites. The maximum adsorption capacity of synthetic zeolite for strontium and cesium ions was 100 and 154 mg/g, respectively, It was found that the Freundlich isotherm model could fit the adsorption isotherm. The distribution coefficients (K$\_$d/) for strontium and cesium ions were also calculated from the adsorption isotherm data, The distribution coefficients decreased with increasing equilibrium concentration of strontium and cesium ions in solution. By studying the removal of cesium and strontium ions in the presence of calcium, magnesium, sodium, potassium, sulfate, nitrate, nitrite, and EDTA (in the range of 0.01 - 5 mM) it was found that these coexistence ions competed for the same adsorption sites with strontium and cesium ions.

Adsorption of Lead Ion by Zeolites Synthesized from Jeju Scoria (제주 스코리아로부터 합성된 제올라이트에 의한 납이온 흡착)

  • Kam, Sang-Kyu;Hyun, Sung-Su;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1437-1445
    • /
    • 2011
  • The adsorption performance of lead ion was studied using five zeolites (Na-P1, sodalite (SOD), analcime (ANA), nepheline hydrate (JBW), cancrinite (CAN)) synthesized from Jeju scoria. The adsorption performances of lead ion decreased in the order of Na-P1 > SOD > ANA > JBW > CAN. These results showed that the synthetic zeolite with a higher cationic exchange capacity showed a higher adsorption performance. The uptake of lead ion by synthetic zeolites were described by Freundlich model better than Langmuir model. The adsorption kinetics of lead ion by synthetic zeolites fitted the pseudo 2nd order kinetics better than pseudo 1st order kinetics. The effective diffusion coefficients of lead ion by synthetic zeolites were ten times higher than the zeolite A synthesized from coal fly ash.

Synthesis of Zeolite From Fly Ash (석탄회를 이용한 제올라이트의 열수합성)

  • 진지영
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.575-584
    • /
    • 1999
  • Through alkaline hydrothermal activation processes, zeolite minerals were synthesized from fly ashes produced at Youngwol and Boryoung power plants. The syntheses were performed in a closed teflon vessel with a teflon-coated magnetic bar for continuous stirring during the reaction periods. The experiments were caeeied out at three different reaction temperatures ($100^{\circ}C$,$200^{\circ}C$, and $250^{\circ}C$), with varying NaOH concentations (0.5~8N) and reaction time (24 to 288 hours). Mineralogical characterization of the reaction products indicated that Na-p1, analcime, and hydroxysodalite were dominant zeolites formed from the both fly ashes at the given experimental conditions, The highest amount of zoelites produced from the Youngwol and Boryoung fly ash were:60 and 45wt%for Na-P1, 70 and 45wt% for analicime, 50 and 40wt% for hydroxysodalite, respectively. A small amount of zeolite A was present in NaP-dominant dample is about 250 meq/100g. This suggests the possibility of its utilization as an ion-absorbent.

  • PDF

Characteristic of Water Pervaporation Using Hydrophilic Composite Membrane Containing Functional Nano Sized NaA zeolites (기능성 나노 제올라이트가 분산된 친수성 복합막 제조 및 탈수 투과증발 특성 연구)

  • Oh, Duckkyu;Lee, Yongtaek
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.98-105
    • /
    • 2013
  • The NaA zeolite particles were dispersed in a poly(vinyl alcohol) (PVA) matrix to prepare a composite membrane. The nano sized zeolite particles of NaA were synthesized in the laboratory and the mean size was approximately 60 nm. Pervaporation characteristics such as a permeation flux and a separation factor were investigated using the membrane as a function of the feed concentration from 0.01 to 0.05 mole fraction and the weight % of NaA particles between 0 wt% and 5 wt% in the membrane. Also, the micro sized particles of $5{\mu}m$ were dispersed in the membrane for a comparison purpose. When the ethanol concentration in the feed solution was 0.01 mole fraction, the flux of water significantly increased from $600g/m^2/hr$ to $2000g/m^2/hr$ as the content of the nano NaA particles in the membrane increased from 0 wt% to 5 wt%, while the NaA particles improved the separation factor from 1.5 to 7.9. When the flux of water through the membrane containing nano sized particles was roughly 15% increased compared to the micro sized particles, whereas the separation factor of water was found to be approximately 5% increased. It can be said that the role of the nano sized NaA particles is quite important since both the flux and the separation factor are strongly affected.

Influencing Factors on the Crystallizations of ZSM-5 in the Absence of Organic Template (유기 템플레이트 배제하의 ZSM-5 결정화에 따른 영향인자)

  • Kim, Wha-Jung;Lim, Chang-Whan;Lee, Seung-Ae;Lee, Myung-Chul;Jeong, Chan-Yee
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.776-784
    • /
    • 1993
  • A pentasil zeolite, ZSM-5 was synthesized in the absence of organic template, $TPA^+$ ion at $210^{\circ}C$. It was realized that a conventional method can not be applied to the synthesis system where organic templates are not used. The results indicated that the compositional range for the crystallization of ZSM-5 is very narrow, requiring very careful controls in the $Na_2O/SiO_2$and $SiO_2/Al_2O_3$ratios. In addition, the results showed that the effects of mixing method, aging and reaction time on the crystallization of ZSM-5 were extraordinarily significant.

  • PDF

Study of Composite Adsorbent Synthesis and Characterization for the Removal of Cs in the High-salt and High-radioactive Wastewater (고염/고방사성 폐액 내 Cs 제거를 위한 복합 흡착제 합성 및 특성 연구)

  • Kim, Jimin;Lee, Keun-Young;Kim, Kwang-Wook;Lee, Eil-Hee;Chung, Dong-Yong;Moon, Jei-Kwon;Hyun, Jae-Hyuk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • For the removal of cesium (Cs) from high radioactive/high salt-laden liquid waste, this study synthesized a highly efficient composite adsorbent (potassium cobalt ferrocyanide (PCFC)-loaded chabazite (CHA)) and evaluated its applicability. The composite adsorbent used CHA, which could accommodate Cs as well as other molecules, as a supporting material and was synthesized by immobilizing the PCFC in the pores of CHA through stepwise impregnation/precipitation with $CoCl_2$ and $K_4Fe(CN)_6$ solutions. When CHA, with average particle size of more than $10{\mu}m$, is used in synthesizing the composite adsorbent, the PCFC particles were immobilized in a stable form. Also, the physical stability of the composite adsorbent was improved by optimizing the washing methodology to increase the purity of the composite adsorbent during the synthesis. The composite adsorbent obtained from the optimal synthesis showed a high adsorption rate of Cs in both fresh water (salt-free condition) and seawater (high-salt condition), and had a relatively high value of distribution coefficient (larger than $10^4mL{\cdot}g^{-1}$) regardless of the salt concentration. Therefore, the composite adsorbent synthesized in this study is an optimized material considering both the high selectivity of PCFC on Cs and the physical stability of CHA. It is proved that this composite adsorbent can remove rapidly Cs contained in high radioactive/high salt-laden liquid waste with high efficiency.

A study on the synthesis and crystal growth of the MFI type zeolite, silicalite under highgravity (고중력에서 MFI 형 Zeolite 인 Silicalite 결정의 합성 및 성장에 관한 연구)

  • Kim, Wha-Jung;Lee, Joon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.97-107
    • /
    • 1991
  • Highly-siliceous dealuminated zeolite, silicalite(end member of ZSM-5) was synthesized from a batch composition of 2.55 $Na_2O-5.0$ TPABr-$100SiO_2-2800H_2O $ at $180^{\circ}C$ and at times ranging from one to seven days of reaction time. Autoclaves containing the synthesis mixture were centrifuged within the specially-equipped convection oven to provide an elevated gravitational force field like 30 and 50 G. Tests were also conducted at normal gravity. For synthesis performed under elevated gravities, average and maximum crystal sizes were substantially greater than those synthesized under normal gravity and product yields were also found to be affected by elevated gravity ; that is, product yields were substantially enhanced under elevated gravity from 4 % to 55 % with respect to normal gravity. The average crystal sizes of silicalite synthesized at normal gravity were 50 to $70{\mu}m$ over an entire range of reaction time, one to seven days while the average crystal sizes synthsized under elevated gravities, 30 and 50 G, were 160 to $190{\mu}m$ respectively. For the elevated gravity, in particular, two separate nucleations and growths were observed. For examples, at 50G, large crystals of $200{\mu}m$ were produced through the second growing stage after 5 days of reaction following the rapid first growing stage where fairly large crystals of $135{\mu}m$ were produced only in 2 days of reaction. The maximum crystal sizes obtained through the above two growing stages were 190 and $300{\mu}m$, respectively. A discussion of how elevated gravity affects nucleation, growth, yield and crystal size of silicalite is presented.

  • PDF