• Title/Summary/Keyword: 합성추정치

Search Result 3, Processing Time 0.021 seconds

유한모집단에서 모형-기반 합성추정치의 예측

  • Sin, Min-Ung;Kim, Ik-Chan
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.131-136
    • /
    • 2003
  • 소지역에서 유한모집단의 총계등을 추정하는데 있어서 모형-기반 합성치를 예측한다. 즉, 예측(prediction) 문제로 추정치를 다룬다. 초모집단(super-population) 확률 모형을 세우고 최적의 예측치를 유도한다.

  • PDF

Estimable functions of mixed models (혼합모형의 추정가능함수)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.2
    • /
    • pp.291-299
    • /
    • 2016
  • This paper discusses how to establish estimable functions when there are fixed and random effects in design models. It proves that estimable functions of mixed models are not related to random effects. A fitting constants method is used to obtain sums of squares due to random effects and Hartley's synthesis is used to calculate coefficients of variance components. To test about the fixed effects the degrees of freedom associated with divisor are determined by means of the Satterthwaite approximation.

Evaluation of High-Resolution QPE data for Urban Runoff Analysis (고해상도 QPE 자료의 도시유출해석 적용성 평가)

  • Choi, Sumin;Yoon, Seongsim;Lee, Byongju;Choi, Youngjean
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.719-728
    • /
    • 2015
  • In this study, urban runoff analyses were performed using high resolution Quantitative Precipitation Estimation (QPE), and variation of rainfall and runoff were analyzed to evaluate QPE data for urban runoff analysis. The five drainage districts (Seocho3, 4, 5, Yeoksam and Nonhyun) around Gangnam station were chosen as study area, the area is $7.4km^2$. Rainfall data from KMA AWS (34 stations), SKP AWS (156 stations) and Gwanduk radar were used for QPEs in Seoul area. Four types of QPE(QPE1: KMA AWS, QPE2: KMA+ SKP AWS, QPE3: Gwangduk radar, QPE4: QPE2+QPE3) of 6 events in July 2013 were generated by using Krigging and conditional merging. The temporal and spatial resolution of QPEs are 10 minutes and 250 m, respectively. The complex pipe network were treated as 773 manholes, 772 sub-drainage districts and 1,059 pipelines for urban runoff analysis as input data. QPE2 and QPE4 show spatial variation of rainfall by sub-drainage districts as 1.9 times bigger than QPE1. The peak runoff of QPE2 and QPE4 also show spatial variation as 6 times bigger than Gangnam and Seocho AWS. Thus, the spatial variation of rainfall and runoff could exist in small area such as this study area, and using high-resolution rainfall data is desirable for accurate urban runoff analysis.