• Title/Summary/Keyword: 합금

Search Result 8,212, Processing Time 0.033 seconds

Fabrication and Characteristics of $Al_2O_{3p}$/AC8A Composites by Pressureless Infiltration Process (무가압함침법에 의한 $Al_2O_{3p}$/AC8A 복합재료의 제조 및 특성)

  • 김재동;고성위;정해용
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2000
  • The fabrication Process of $Al_2O_{3p}$/AC8A composites by pressureless infiltration technique and the effects of additive Mg content and volume fraction of particulate reinforcement on mechanical and wear properties were investigated. It was found that the bending strength decreased with increasing volume fraction of $Al_2O_{3p}$ particles. Whereas hardness increased with volume fraction of $Al_2O_{3p}$ particles. The decrement of strength in case of high volume fraction of $Al_2O_{3p}$ particles was attributed to high porosity level. In terms of additive Mg content, $Al_2O_{3p}$/AC8A composites containing around 5~7wt% of additive Mg indicated the highest strength, and hardness values increased with additive Mg contents. Wear resistance of AC8A alloy were improved by reinforcement of $Al_2O_{3p}$ particles especially at high sliding velocity. Wear property of $Al_2O_{3p}$/AC8A composites and AC8A alloy exhibited different aspects. $Al_2O_{3p}$/AC8A composites indicated more wear loss than AC8A alloy at slow velocity region. However a transition point of wear loss was found at middle velocity region which shows the minimum wear loss and wear loss at high velocity region exhibited almost same value as at slow velocity region, whereas wear loss of AC8A alloy almost linearly increased with sliding velocity. It was found that $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 20% exhibited abrasive wear surface regardless of sliding velocity and $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 40% showed slightly adhesive wear surface at low sliding velocity, and it progressed to severe wear as increasing the sliding velocity.

  • PDF

Fabrication of Ceramic Particulate Reinforced Steel Composites by Liquid Pressing Infiltration Process (용융가압함침공정을 이용한 세라믹 입자 강화 철강복합재료의 제조성 검증)

  • Cho, Seungchan;Lee, Yeong-Hwan;Ko, Seongmin;Park, Hyeon Jae;Lee, Donghyun;Shin, Sangmin;Jo, Ilguk;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.117-121
    • /
    • 2018
  • Various ceramic particulate such as TiC, $TiB_2$, $Al_2O_3$ reinforced SUS431 matrix composites were successfully fabricated by a novel liquid pressing infiltration process. Microstructures of the SUS431 composite were analyzed to determine manufacturability of composites. $Al_2O_3$-SUS431 composite had lots of defects due to poor wettability between the $Al_2O_3$ and steel matrix. On the other hand, TiC was uniformly dispersed in the SUS431 matrix than $TiB_2$ and $Al_2O_3$ due to good wettability and interfacial properties.

The Study on Marginal discrepancy of Manufactured Coping Crown according to Production method and materials by using CAD/CAM System (CAD/CAM System을 활용하여 제작된 Coping Crown의 제작방식 및 재료에 따른 변연 적합도에 관한 연구)

  • Lee, Hee-Sung;Shin, Seong-Hun;Song, Joon-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.448-453
    • /
    • 2017
  • The purpose of this study was to compare the marginal discrepancy of coping crowns according to manufacturing method and materials by using the CAD/CAM system to compare the optimum manufacturing method and materials. The coping crowns were fabricated by using manufacturing methods and materials, and marginal fit was measured using the replica technique. For comparative analysis of manufacturing methods and materials, analysis of variance was performed. One-way ANOVA was performed to compare and analyze different mean values. For the milling method of the alloy, 114.6 was obtained for the MM group, 111.4 for the MS group, 67.2 for the MSC group, and 50.9 for the MSS group, respectively, using the milling/sintering method. In the milling/sintering method of ceramic, 35.6 and 36.3, respectively, were obtained for the SLME group and SLMR group, respectively. However,there was a significant difference according to the material. The milling/sintering method of the ceramic material gave the lowest value, and it was verified by the optimal method. However, marginal discrepancy of coping crowns fabricated using the CAD/CAM system is applicable to the clinic since it corresponds to acceptable numerical values in clinical practice.

Comparison of histologic observation and insertional and removal torque values between titanium grade 2 and 4 microimplants (Grade 2, 4 티타늄 마이크로 임플랜트의 식립 및 제거 토크와 식립 후 조직학적 반응의 비교)

  • Kang, Sung-Taek;Sung, Jae-Hyun;Kyung, Hee-Moon;Park, Hyo-Sang;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.171-177
    • /
    • 2006
  • The purpose of this study was to evaluate the light microscopic features and the maximum insertional and removal torque value of microimplants, made from titanium grade 2 or 4, in the tibia of 6 rabbits. First, the maximum torque values of microimplants at implantation were measured. After 2, 8, and 12 weeks of healing time, the microimplant-containing segments of tibia of 2 rabbits were removed and the maximum removal torque of each microimplant were measured. Comparisons of histologic examination and insertional and removal torque values were carried out for the two groups of microimplants. Removal torque values were significantly increased in both groups after 8 and 12 weeks as compared to 2 weeks after implantation. Other values measured did not show any statistically significant differences and there were no histological differences between grade 2 and 4 titanium. Based on these results, this study showed that there were no significant differences between grade 2 and 4 titanium. It seems better to use grade 4 titanium for making microimplants because grade 4 titanium is mechanically harder than grade 2 titanium and has similar retention.

Performance Evaluation of Magnesium Bipolar Plate in Lightweight PEM Fuel Cell Stack for UAV (무인기용 경량 PEM 연료전지 스택용 마그네슘 분리판의 성능평가)

  • Park, To-Soon;Oh, Ji-Hyun;Ryu, Tae-Kyu;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.788-795
    • /
    • 2013
  • A magnesium bipolar plate whose surface was protected by thinly deposited silver layer was investigated as an alternative to existing graphite bipolar plate of PEM fuel cells. Thin silver layer of $3{\mu}m$ was deposited on a magnesium alloy substrate by physical vapor deposition (PVD) method in an environment of $180^{\circ}C$. A number of tests were conducted on the fabricated magnesium based bipolar plates to determine their suitability for use in PEM fuel cell stacks. The test on corrosion resistance in the same pH condition as in a PEM operation demonstrated the layer protected the magnesium alloy substrate, while unprotected substrate suffered from severe corrosion. The contact resistance of the fabricated bipolar plate was less than $20m{\Omega}-cm^2$ which was superior to the conventional bipolar plates. A single cell was constructed using the fabricated bipolar plates and power output was measured. Due to the enhanced conductivity caused by low contact resistance, slight increase was observed in current density and output voltage. With low density of the magnesium substrate and ease on machining, the weight reduction of the stack of 30~40 % is possible to produce the same power output.

Performance and structural analysis of a radial inflow turbine for the organic Rankine cycle (유기랭킨사이클용 반경류 터빈의 성능 및 구조 해석)

  • Kim, Do-Yeop;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.484-492
    • /
    • 2016
  • The turbine is an important component and has a significant impact on the thermodynamic efficiency of the organic Rankine cycle. A precise preliminary design is essential to developing efficient turbines. In addition, performance analysis and structural analysis are needed to evaluate the performance and structural safety. However, there are only a few exclusive studies on the development process of the radial inflow turbines for the organic Rankine cycle (ORC). In this study, a preliminary design of the ORC radial inflow turbine was performed. Subsequently, the performance and structural analysis were also carried out. The RTDM, which was developed as an in-house code, was used in the preliminary design process. The results of the performance analysis were found to be in good agreement with target performances. Structural analysis of the designed turbine was also carried out in order to determine whether the material selection for this study is suitable for the flow conditions of the designed turbine, and it was found that the selected aluminum alloy is suitable for the designed turbine. However, the reliability of the preliminary design algorithms and numerical methods should be strictly verified by an actual experimental test.

Selective Chemical Dealloying for Fabrication of Surface Porous Al88Cu6Si6 Eutectic Alloy (화학적 침출법을 통한 표면 다공성 Al-Cu-Si 공정 합금 제조)

  • Lee, Joonhak;Kim, Jungtae;Im, Soohyun;Park, Hyejin;Shin, Hojung;Park, Kyuhyun;Qian, M.;Kim, Kibeum
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.227-232
    • /
    • 2013
  • Al-based alloys have recently attracted considerable interest as structural materials and light weight materials due to their excellent physical and mechanical properties. For the investigation of the potential of Al-based alloys, a surface porous $Al_{88}Cu_6Si_6$ eutectic alloy has been fabricated through a chemical leaching process. The formation and microstructure of the surface porous $Al_{88}Cu_6Si_6$ eutectic alloy have been investigated using X-ray diffraction and scanning electron microscopy. The $Al_{88}Cu_6Si_6$ eutectic alloy is composed of an ${\alpha}$-Al dendrite phase and a single eutectic phase of $Al_2Cu$ and ${\alpha}$-Al. We intended to remove only the ${\alpha}$-Al phase and then the $Al_2Cu$ phase would form a porous structure on the surface with open pores. Both acidic and alkaline aqueous chemical solutions were used with various concentrations to modify the influence on the microstructure and the overall chemical reaction was carried out for 24 hr. A homogeneous open porous structure on the surface was revealed via selective chemical leaching with a $H_2SO_4$ solution. Only the ${\alpha}$-Al phase was successfully leached while the morphology of the $Al_2Cu$ phase was maintained. The pore size was in a range of $1{\sim}5{\mu}m$ and the dealloying depth was nearly $3{\mu}m$. However, under an alkaline NaOH, aqueous solution, an inhomogeneous porous structure on the surface was formed with a 5 wt% NaOH solution and the morphology of the $Al_2Cu$ phase was not preserved. In addition, the sample that was leached by using a 7 wt% NaOH solution crumbled. Al extracted from the Al2Cu phase as ${\alpha}$-Al phase was dealloyed, and increasing concentration of NaOH strongly influenced the morphology of the $Al_2Cu$ phase and sample statement.

Evolution on Microstructure and Mechanical Property of Ti65Fe35 Hypereutectic Alloys by Adding Low Melting Temperature Elements (저융점 원소의 첨가에 따른 Ti65Fe35 과공정 합금의 미세구조와 기계적 특성의 변화)

  • Hwang, Yun Jung;Hong, Sung Hwan;Kim, Jeong Tae;Kim, Young Seok;Park, Hae Jin;Kim, Hee Jin;Jeong, Yeon Beom;Lee, Young Hoon;Kim, Ki Buem
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.557-562
    • /
    • 2017
  • The microstructural evolution and modulation of mechanical properties were investigated for a $Ti_{65}Fe_{35}$ hypereutectic alloy by addition of $Bi_{53}In_{47}$ eutectic alloys. The microstructure of these alloys changed with the additional BiIn elements from a typical dendrite-eutectic composite to a bimodal eutectic structure with primary dendrite phases. In particular, the primary dendrite phase changed from a TiFe intermetallic compound into a ${\beta}$-Ti solid solution despite their higher Fe content. Compressive tests at room temperature demonstrated that the yield strength slightly decreased but the plasticity evidently increased with an increasing Bi-In content, which led to the formation of a bimodal eutectic structure (${\beta}$-Ti/TiFe + ${\beta}$-Ti/BiIn containing phase). Furthermore, the (Ti65Fe35)95(Bi53In47)5 alloy exhibited optimized mechanical properties with high strength (1319MPa) and reasonable plasticity (14.2 %). The results of this study indicate that the transition of the eutectic structure, the type of primary phases and the supersaturation in the ${\beta}$-Ti phase are crucial factors for controlling the mechanical properties of the ultrafine dendrite-eutectic composites.

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

The Interfacial Reaction and Joint Properties of Sn-3.5Ag/Cu (Sn-3.5Ag/Cu의 계면반응 및 접합특성)

  • Jung, Myoung-Joon;Lee, Kyung-Ku;Lee, Doh-Jae
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.747-752
    • /
    • 1999
  • The interfacial reaction and joint properties of Sn-3.5Ag/Cu and Sn-3.5Ag-1Zn/Cu joint were studied. Modified double lap shear solder joints of Sn-3.5Ag and Sn-3.5Ag- lZn solder were aged for 60days at $100^{\circ}C$ and $150^{\circ}C$ and then loaded to failure in shear. The Sn-3.5Ag/Cu had a fast growth rate of the reaction layer in comparison with the Sn-3.5Ag-lZn at the aging temperature of $150^{\circ}C$ Through the SEM/EDS analysis of solder joint, it was proved that intermatallic layer was $Cu_{6}Sn_5$ phase and aged specimens showed that intermatallic layer grew in proportion to $t_{1/2}$, and the precipitate of $Ag_3Sn$ occur to both inner layer and interface of layer and solder. In case of Zn-containing composite solder, $Cu_{6}Sn_{5}$ phase formed at the side of substrate and $Cu_{5}Zn_{8}$ phase formed at the other side in double layer. The shear strength of the Sn-3.5Ag/Cu joint improved by addition of IZn. The strength of the joint increases with strain rate and decreases with aging temperature

  • PDF