• Title/Summary/Keyword: 함정 전투 관리 시스템

Search Result 15, Processing Time 0.022 seconds

A Study of Test and Evaluation Methods for Manpower of System of System (함정 전투성능 신뢰성 보장을 위한 승조원 수 적절성 시험평가 제한점 및 시험평가 제도 개선방안)

  • Byeongjun An;Jeongho Song
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.1
    • /
    • pp.16-25
    • /
    • 2024
  • By deriving the limitations of the test evaluation, it was intended to suggest a plan to improve the test evaluation system for the appropriateness of the number of ship crews according to the design and construction of troops-saving ships. Currently, the number of crew members by ship type is confirmed and specified in the ROC(Operation Requirement Performance) in the early stages of design, such as conceptual design, but there is a limit to testing and evaluating the appropriateness of ensuring reliability of combat performance.

Development of Korean Condition Based Maintenance Systems to Monitor Naval Weapon Systems (해군 무기체계 한국형 상태진단시스템 발전방향 연구)

  • Oh, Kyungwon
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • The primary aim for using a Korean Condition Based Maintenance (CBM) system is to maintain military operational readiness using Interactive Collection Analysis Systems (ICAS) installed on naval vessels. Other aims are to preemptively provision maintenance and supply functions, to guarantee economical management of logistical assets, and to implement data driven equipment life cycle management. In order to accomplish these aims, it is necessary to establish standard system conditions. However, because manufacturers do not provide the technology necessary for maintenance management, it is required to retain component performance maps for each piece of equipment, and to accumulate data about frequently occurring fault patterns. This study confirms the validity of component performance maps using micro gas turbines and provides accumulated data on machine break downs. This would allow real time equipment performance checks and present performance trends. Then analysis would provide solutions for maintaining the best machine operating conditions with detailed maintenance manuals for operators. This study is a basis for further research to investigate additional ways to develop CBM using data obtained from naval vessels used in actual military operations.

Design and Realization of Distributed Real-time Message Management Scheme for Naval Combat System Development Tool (함정 전투 시스템 개발 툴을 위한 분산 실시간 메시지 관리 기법 설계 및 구현)

  • Im, Jin Yong;Kim, Dong Seong;Song, Kyung Sub;Choi, Yoon Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.570-577
    • /
    • 2016
  • This paper proposes the design of a novel distributed message management scheme using a message-oriented management and analysis tool (MOMAT) for naval combat system (NCS) middle-ware. If a message is not guaranteed real-time of the NCS with each node, it causes the loss of data and decreases the reliability of systems. To solve these problems, improved message management schemes are proposed. Message management schemes are considering a real-time user management scheme and a real-time traffic management scheme. The proposed schemes are simulated with a developed simulation tool, data publisher, and subscriber connected through nodes in middle-ware. The simulation results show improved results in terms of message round-trip time (RTT), End-to-End delay, and throughput.

A Study on the application method of UPS's Battery Safety for battleship Command and Fire Control System (지휘무장통제체계용 UPS 배터리의 안전성 확보방안 연구)

  • Park, Gun-Sang;Kim, Jae-Yun;Kim, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.587-596
    • /
    • 2021
  • Naval battleships have systems to perform special purposes, such as the Command and Fire Control System (CFCS). Some of the this equipment should be equipped with an Uninterruptible Power System (UPS ) to ensure operational continuity and the backup of important data, even during unexpected power outages caused by problems with the ship's power generator. Heavy combat losses can occur if the equipment cannot satisfy the function. Therefore, it is important to design a stable UPS. The battery and Battery Management System (BMS) are two of the most important factors for designing a stable UPS. A power outage will be encountered if the battery and BMS are not stable. The customer will be exposed to abnormal situations, loss of important tactical data, and inability to operate some of the CFCS. As a result, an enhanced safety system should be designed. Thus, this study implemented and verified the improved system in terms of three methods, such as comparative analysis of the batteries, improvement about leakage current of the circuit, and tests of the aggressive environmental resistance to improve the UPS for CFCS.

Development of TLCSM Based Integrated Architecture for Applying FRACAS to Defense Systems (국방 무기체계 FRACAS 적용을 위한 TLCSM 기반 통합 아키텍처 구축)

  • Jo, Jeong-Ho;Song, Hyeon-Su;Kim, Bo-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.190-196
    • /
    • 2020
  • FRACAS(Failure Reporting, Analysis and Corrective Action System) has been applied in various industries to improve the reliability of the systems. FRACAS is effective in improving reliability by repeating failure analysis, proper corrective action, and result verification for identified failures. However, FRACAS has many limitations in terms of process, data collection and management to be integrated into the existing development environment. In the domestic defense industry, studies on the development of FRACAS system and process improvement have been conducted to solve the difficulties of applying FRACAS, but most of them are concentrated in the operation/maintenance phase. Since FRACAS should be conducted in consideration of TLCSM(Total Life Cycle System Management), it is necessary to study the reference architecture so that FRACAS can be applied from the early design phase. In this paper, we studied the TLCSM-based integrated architecture considering the system life cycle phases, FRACAS closed-loop process, and FRACAS essentials in order to effectively apply FRACAS throughout the life cycle of defense systems. The proposed architecture was used as a reference model for FRACAS in a shipboard combat system.