• Title/Summary/Keyword: 함수 주성분 분석

Search Result 97, Processing Time 0.031 seconds

A PCA-based MFDWC Feature Parameter for Speaker Verification System (화자 검증 시스템을 위한 PCA 기반 MFDWC 특징 파라미터)

  • Hahm Seong-Jun;Jung Ho-Youl;Chung Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • A Principal component analysis (PCA)-based Mel-Frequency Discrete Wavelet Coefficients (MFDWC) feature Parameters for speaker verification system is Presented in this Paper In this method, we used the 1st-eigenvector obtained from PCA to calculate the energy of each node of level that was approximated by. met-scale. This eigenvector satisfies the constraint of general weighting function that the squared sum of each component of weighting function is unity and is considered to represent speaker's characteristic closely because the 1st-eigenvector of each speaker is fairly different from the others. For verification. we used Universal Background Model (UBM) approach that compares claimed speaker s model with UBM on frame-level. We performed experiments to test the effectiveness of PCA-based parameter and found that our Proposed Parameters could obtain improved average Performance of $0.80\%$compared to MFCC. $5.14\%$ to LPCC and 6.69 to existing MFDWC.

선박운항 안정성 평가를 위한 시뮬레이션 실험조건 도출 연구

  • Gong, In-Yeong;Gwon, Se-Hyeok;Kim, Seon-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.81-83
    • /
    • 2007
  • 항만이나 항로에서의 심층적인 선박운항 안전성 평가를 위한 목적으로 주로 선박운항 시뮬레이션 시스템이 사용되고 있다. 하지만, 실제해상에서 선박이 조우할 수 있는 환경 조건은 매우 다양한 반면, 비용이나 시간적인 제약으로 인하여 실시간 선박운항 시뮬레이션은 극히 한정 된 경우에 대해서만 수행되는 것이 일반적이다. 본 논문에서는, 이러한 실시간 시뮬레이션 실험 조건을 효과적이고 체계적으로 도출하기 위한 통계적 기법에 대하여 제안하고, 이 기법을 실제 선박 운항 안전성 평가를 위한 시뮬레이션 연구에 적용한 실증 분석 결과를 사례 연구로 기술하였다. 실증 분석에는 주성분을 이용한 종합 운항 난이도 산정 방법과 누적 확률분포 개념을 이용하여 선박 운항 난이도가 높은 실험 조건을 실시간 시뮬레이션 실험 조건으로 선택하는 기법을 제시하였다.

  • PDF

Comparison of head-related transfer function models based on principal components analysis (주성분 분석법을 이용한 머리전달함수 모형화 기법의 성능 비교)

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.920-927
    • /
    • 2008
  • This study deals with modeling of Head-Related Transfer Functions (HRTFs) using Principal Components Analysis (PCA) in the time and frequency domains. Four PCA models based on Head-Related Impulse Responses (HRIRs), complex-valued HRTFs, augmented HRTFs, and log-magnitudes of HRTFs are investigated. The objective of this study is to compare modeling performances of the PCA models in the least-squares sense and to show the theoretical relationship between the PCA models. In terms of the number of principal components needed for modeling, the PCA model based on HRIR or augmented HRTFs showed more efficient modeling performance than the PCA model based on complex-valued HRTFs. The PCA model based on HRIRs in the time domain and that based on augmented HRTFs in the frequency domain are shown to be theoretically equivalent. Modeling performance of the PCA model based on log-magnitudes of HRTFs cannot be compared with that of other PCA models because the PCA model deals with log-scaled magnitude components only, whereas the other PCA models consider both magnitude and phase components in linear scale.

  • PDF

Daily Gas Demand Forecast Using Functional Principal Component Analysis (함수 주성분 분석을 이용한 일별 도시가스 수요 예측)

  • Choi, Yongok;Park, Haeseong
    • Environmental and Resource Economics Review
    • /
    • v.29 no.4
    • /
    • pp.419-442
    • /
    • 2020
  • The majority of the natural gas demand in South Korea is mainly determined by the heating demand. Accordingly, there is a distinct seasonality in which the gas demand increases in winter and decreases in summer. Moreover, the degree of sensitiveness to temperature on gas demand has changed over time. This study firstly introduces changing temperature response function (TRF) to capture effects of changing seasonality. The temperature effect (TE), estimated by integrating temperature response function with daily temperature density, represents for the amount of gas demand change due to variation of temperature distribution. Also, this study presents an innovative way in forecasting daily temperature density by employing functional principal component analysis based on daily max/min temperature forecasts for the five big cities in Korea. The forecast errors of the temperature density and gas demand are decreased by 50% and 80% respectively if we use the proposed forecasted density rather than the average daily temperature density.

The Factor Clustering of Growing Stock Changes by Forest Policy using Principal Component Analysis (주성분 분석을 이용한 산림정책별 입목축적변화의 요인 군집)

  • Shin, Hye-Jin;Kim, Eui-Gyeong;Kim, Dong-Hyeon;Kim, Hyeon-Guen
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • This study is a precedent study for deriving transfer function model between growing stock and forest management policies. Its goal is to solve the multicollinearity between forest works inducing growing stock changes through principal component analysis using annual time series data from 1997 to 2008. As the results, the total explanatory power showed 91.4% on the summarized 3 principal components. They were renamed 'good forest management' 'pest & insets management' 'forest fires' for conceptualization on the derived each component.

HRIR Customization in the Median Plane via Principal Components Analysis (주성분 분석을 이용한 HRIR 맞춤 기법)

  • Hwang, Sung-Mok;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.120-126
    • /
    • 2007
  • A principal components analysis of the entire median HRIRs in the CIPIC HRTF database reveals that the individual HRIRs can be adequately reconstructed by a linear combination of several orthonormal basis functions. The basis functions cover the inter-individual and inter-elevation variations in median HRIRs. There are elevation-dependent tendencies in the weights of basis functions, and the basis functions can be ordered according to the magnitude of standard deviation of the weights at each elevation. We propose a HRIR customization method via tuning of the weights of 3 dominant basis functions corresponding to the 3 largest standard deviations at each elevation. Subjective listening test results show that both front-back reversal and vertical perception can be improved with the customized HRIRs.

  • PDF

Localization of a mobile robot using the appearance-based approach (외향 기반 환경 인식을 사용한 이동 로봇의 위치인식 알고리즘)

  • 이희성;김은태
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.6
    • /
    • pp.47-53
    • /
    • 2004
  • This paper proposes an algerian for determining robot location using appearance-based paradigm. First, this algorithm compresses the image set using Principal Component Analysis(PCA) to obtain a low-dimensional subspace, called the eigenspace, and it makes a manifold that represent a continuous-appearance function. Neural network is employed to estimate the location of the mobile robot from the coefficients of the eigenspace. Then, Kalman filtering scheme is used for the fine estimation of the robot location. The algorithm has been implemented and tested on a mobile robot system. It is shown that the robot location is estimated accurately in several trials.

Scent Analysis Using an Electronic Nose and Flowering Period of Potted Diploid and Tetraploid Cymbidium (심비디움 2배체, 4배체의 분화수명 조사 및 전자코를 이용한 향기패턴분석)

  • Hwang, Sook-Hyun;Kim, Mi-Seon;Park, Pue-Hee;Park, So-Young
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.163-171
    • /
    • 2016
  • We investigated the intensity and pattern of the scent produced by diploid and tetraploid Cymbidium flowers, using an electronic nose with 6 metal oxide sensors (MOS). The MOS responses were evaluated by principal component analysis, discriminant function analysis, and sensor data. These analyses revealed that tetraploid flowers had a stronger scent than diploid flowers in Cymbidium Golden Elf 'Sundust'. Furthermore, among the different flower parts-column, lip, and petals-the column produced the strongest scent. There was no significant difference between the flowering periods of diploid and tetraploid potted Cymbidium Golden Elf 'Sundust' and Cymbidium Elma 'Orient Toyo' grown in a greenhouse. Moreover, there were no significant differences between the number of flowers per flower stem and the length of flower stems on the diploid and tetraploid plants of these two Cymbidium cultivars. This study provides potentially useful information for the breeding of polyploidy Cymbidium in the floriculture industry.

An Analysis of Noise Robustness for Multilayer Perceptrons and Its Improvements (다층퍼셉트론의 잡음 강건성 분석 및 향상 방법)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.159-166
    • /
    • 2009
  • In this paper, we analyse the noise robustness of MLPs(Multilayer perceptrons) through deriving the probability density function(p.d.f.) of output nodes with additive input noises and the misclassification ratio with the integral form of the p.d.f. functions. Also, we propose linear preprocessing methods to improve the noise robustness. As a preprocessing stage of MLPs, we consider ICA(independent component analysis) and PCA(principle component analysis). After analyzing the noise reduction effect using PCA or ICA in the viewpoints of SNR(Singal-to-Noise Ratio), we verify the preprocessing effects through the simulations of handwritten-digit recognition problems.

A Variant of Improved Robust Fuzzy PCA (잡음 민감성이 개선된 변형 퍼지 주성분 분석 기법)

  • Kim, Seong-Hoon;Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.25-31
    • /
    • 2011
  • Principal component analysis (PCA) is a well-known method for dimensionality reduction and feature extraction. Although PCA has been applied in many areas successfully, it is sensitive to outliers due to the use of sum-square-error. Several variants of PCA have been proposed to resolve the noise sensitivity and, among the variants, improved robust fuzzy PCA (RF-PCA2) demonstrated promising results. RF-PCA2, however, still can fall into a local optimum due to equal initial membership values for all data points. Another reason comes from the fact that RF-PCA2 is based on sum-square-error although fuzzy memberships are incorporated. In this paper, a variant of RF-PCA2 called RF-PCA3 is proposed. The proposed algorithm is based on the objective function of RF-PCA2. RF-PCA3 augments RF-PCA2 with the objective function of PCA and initial membership calculation using data distribution, which make RF-PCA3 to have more chance to converge on a better solution than that of RF-PCA2. RF-PCA3 outperforms RF-PCA2, which is demonstrated by experimental results.