• Title/Summary/Keyword: 한남

Search Result 761, Processing Time 0.023 seconds

Stability of Henna Natural Hair Dye Cream Formulation According to Cetyl Alcohol Contents (Cetyl alcohol 함량에 따른 크림 제형 Henna 천연 염모제의 안정성)

  • Kang, Eyoung;Lee, Seunghee;Kim, Woonjung;Jung, Jongjin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.1176-1182
    • /
    • 2021
  • In this study, the emulsion stability of henna, a natural hair dye, according to the content of cetyl alcohol, one of the emulsification stabilizers, was analyzed, and the content of cetyl alcohol showing the most stable emulsification was confirmed. To analyze the emulsion stability, differences in particle size, particle shape, viscosity, and color after dyeing were compared according to the content of cetyl alcohol. As a result of dynamic light scattering (DLS) zeta analysis, cetyl alcohol 3% showed the highest zeta potential value of 115.9 mV, and the particle size distribution was henna in which a cream-type hair dye containing 3% cetyl alcohol was dispersed in distilled water. The width of the particle size distribution was narrow compared to. As a result of viscometer analysis, the viscosity increased as the content of cetyl alcohol increased. As a result of measuring the henna pH of the cream formulation, it was measured in a pH range suitable for the scalp. As a result, emulsion stability increases as the content of cetyl alcohol increases in henna cream formulations for hair dye.

Implementation of Autonomous IoT Integrated Development Environment based on AI Component Abstract Model (AI 컴포넌트 추상화 모델 기반 자율형 IoT 통합개발환경 구현)

  • Kim, Seoyeon;Yun, Young-Sun;Eun, Seong-Bae;Cha, Sin;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.71-77
    • /
    • 2021
  • Recently, there is a demand for efficient program development of an IoT application support frameworks considering heterogeneous hardware characteristics. In addition, the scope of hardware support is expanding with the development of neuromorphic architecture that mimics the human brain to learn on their own and enables autonomous computing. However, most existing IoT IDE(Integrated Development Environment), it is difficult to support AI(Artificial Intelligence) or to support services combined with various hardware such as neuromorphic architectures. In this paper, we design an AI component abstract model that supports the second-generation ANN(Artificial Neural Network) and the third-generation SNN(Spiking Neural Network), and implemented an autonomous IoT IDE based on the proposed model. IoT developers can automatically create AI components through the proposed technique without knowledge of AI and SNN. The proposed technique is flexible in code conversion according to runtime, so development productivity is high. Through experimentation of the proposed method, it was confirmed that the conversion delay time due to the VCL(Virtual Component Layer) may occur, but the difference is not significant.

A Methodology for Analyzing Effects of the Cooperative Engagement Capability System Applied to Naval Operations (협동교전능력(CEC) 체계구축을 위한 해상작전 적용효과 분석 방법론)

  • Jung, Yong-Tae;Jeong, Bong Joo;Choi, Bong-Wan;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.95-105
    • /
    • 2019
  • The Cooperative Engagement Capability (CEC) System produces a synergy between the sensors and shooters that are used on various platforms by integrating them. Even the US Navy has been recently adopting the CEC system that maximizes the effectiveness of the air defense operations by efficiently coordinating the dispersed air defense assets. The Navy of other countries are conducting research studies on the theory and application methods for the CEC system. The ROK Navy has limited air defense capabilities due to its independent weapons systems on battle ships. Therefore, the ROK Navy is currently going through a phase where research on proving the validity of building the CEC system because it will provide a way to overcome the limit of the platform based air defense capability. In this study, our goal is to propose methods that maximize the air defense capability of ROK Navy, identify the available assets for constructing the CEC system, and estimate effects of the CEC system when it is applied to the naval operations. In addition, we will provide a simple model that was developed to estimate these effects and a case study with virtual data to demonstrate the effects of the system when it is applied to the naval operations. The research result of this study will provide a way for building the basis of the Korean CEC system.

Theoretical Investigation for the Adsorption of Atmospheric Harmful Gases on the Germanene Sheet (게르마닌 시트의 대기오염 기체 흡착에 대한 이론적 연구)

  • Seo, Hyun-Il;Kim, DongHyun;Baek, SooJin;Shin, ChangHo;Kim, SeungJoon
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.334-344
    • /
    • 2020
  • The adsorption of various atmospheric harmful gases (COx, NOx, SOx) on graphene-like Germanene 2D sheet was theoretically investigated using density functional theory(DFT) method. The structures were fully optimized at the B3LYP/cc-pvDZ and CAM-B3LYP/cc-pvDZ levels of theory and confirmed to be a local minimum by the calculation of the harmonic vibrational frequencies. The adsorptions of gases on the Germanene sheet were predicted to be a physisorption process for CO, CO2, NO, and SO2 gases but to be a chemisorption process for NO2, SO, and SO2 gases.

Detecting Spectre Malware Binary through Function Level N-gram Comparison (함수 단위 N-gram 비교를 통한 Spectre 공격 바이너리 식별 방법)

  • Kim, Moon-Sun;Yang, Hee-Dong;Kim, Kwang-Jun;Lee, Man-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1043-1052
    • /
    • 2020
  • Signature-based malicious code detection methods share a common limitation; it is very hard to detect modified malicious codes or new malware utilizing zero-day vulnerabilities. To overcome this limitation, many studies are actively carried out to classify malicious codes using N-gram. Although they can detect malicious codes with high accuracy, it is difficult to identify malicious codes that uses very short codes such as Spectre. We propose a function level N-gram comparison algorithm to effectively identify the Spectre binary. To test the validity of this algorithm, we built N-gram data sets from 165 normal binaries and 25 malignant binaries. When we used Random Forest models, the model performance experiments identified Spectre malicious functions with 99.99% accuracy and its f1-score was 92%.

Preparation and application of the functionalized Shampoo with core-shell microcapsule (코아-쉘 마이크로 캡슐을 이용한 기능성 샴푸의 제조 및 응용)

  • Seo, Mi-Young;Kim, Eun-Ji;Kim, In-Kyoung;Choi, Seong-Ho
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • In this study, we prepared the functionalized Shampoo with three-type functionalized microcaples which were synthesized by microcapsulation, respectively. In detail, the functionalized microcapsule was included such as (1) the functionalized microcapsule with core-menthol and shell-melamine resin and (2) the functionalized microcapsule with core-menthol and shell-lecithin, and (3) the functionalized microcapsule with core-cinnamon oil and shell-lecithin, respectively. The size and morphology of the prepared microcapsules was evaluated via Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). From these results, the prepared microcapsules with size of 0.1~0.2 ㎛ and spherical morphology was confirmed. Furthermore, we applied the prepared Shampoo to treat hair. As results we confirmed that the scalp temperature was decreased about 3~4 ℃ compared to no treatment. This result may be considered that the core compounds are vaporize when the functionalized Shampoo is treated on scalp. We will determine the change of scalp pore, diameter of hair, and etc during treatment of the functionalized Shampoo.

A USB classification system using deep neural networks (인공신경망을 이용한 USB 인식 시스템)

  • Woo, Sae-Hyeong;Park, Jisu;Eun, Seongbae;Cha, Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.535-538
    • /
    • 2022
  • For Plug & Play of IoT devices, we develop a module that recognizes the type of USB, which is a typical wired interface of IoT devices, through image recognition. In order to drive an IoT device, a driver for communication and device hardware is required. The wired interface for connecting to the IoT device is recognized by using the image obtained through the camera of smartphone shooting to recognize the corresponding communication interface. For USB, which is a most popular wired interface, types of USB are classified through artificial neural network-based machine learning. In order to secure sufficient data set of artificial neural networks, USB images are collected through the Internet, and additional image data sets are secured through image processing. In addition to the convolution neural networks, recognizers are implemented with various deep artificial neural networks, and their performance is compared and evaluated.

  • PDF

Application Scenario of Integrated Development Environment for Autonomous IoT Applications based on Neuromorphic Architecture (뉴로모픽 아키텍처 기반 자율형 IoT 응용 통합개발환경 응용 시나리오)

  • Park, Jisu;Kim, Seoyeon;Kim, Hoinam;Jeong, Jaehyeok;Kim, Kyeongsoo;Jung, Jinman;Yun, Young-Sun
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • As the use of various IoT devices increases, the importance of IoT platforms is also rising. Recently, artificial intelligence technology is being combined with IoT devices, and research applying a neuromorphic architecture to IoT devices with low power is also increasing. In this paper, an application scenario is proposed based on NA-IDE (Neuromorphic Architecture-based autonomous IoT application integrated development environment) with IoT devices and FPGA devices in a GUI format. The proposed scenario connects a camera module to an IoT device, collects MNIST dataset images online, recognizes the collected images through a neuromorphic board, and displays the recognition results through a device module connected to other IoT devices. If the neuromorphic architecture is applied to many IoT devices and used for various application services, the autonomous IoT application integrated development environment based on the neuromorphic architecture is expected to emerge as a core technology leading the 4th industrial revolution.