• Title/Summary/Keyword: 한국 지형학회

Search Result 7,571, Processing Time 0.043 seconds

The Interpretation of Korean Traditional Garden in the View of Complexity Theory - Focusing on Soswaewon Garden - ('복잡성(Complexity) 이론'에 의한 한국 전통정원의 해석 - 한국의 명원 소쇄원을 중심으로 -)

  • Jang, Il-Young;Shin, Sang-Sup
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.75-85
    • /
    • 2010
  • The purpose of this study is to attempt new analysis on Soswaewon Garden(瀟灑園) where is Korea's traditional garden, focusing on which the tendency of its change is a relational-formation tool similar to the Eastern Mode of Thought, with paying attention to conversion as the new view of world. Accordingly, the aim is to reanalyze by connecting with Soswaewon Garden based on the theory of complexity, which tries to look at the whole through relationship rather than characteristics in individual components. Given summarizing findings, those are as follows. First, it was found that complexity shown in space and open system of physical dimension was characterized by 'event(situation)', 'non-determination' and 'homogeneous relationships between part and whole', and a variety of techniques introduced the nature positively. In particular, it was found that there were many cases of topographic usage, since the Soswaewon Garden selected its construction site proactively and was a product from architectural works in compliance with a given flow of natural topography. This has a nature of open text in the situation of emergent behaviors. Second, it was found that complexity shown in experiences and open system on the invisible dimension was characterized primarily by 'event(situation)' and 'relationships of interactive response between actors and environment', and various techniques appeared as a space for interactive combination of nature and daily experiences. This is typical of bilateral harmony based on interactions between subject and object, and between mankind and nature, and becomes also a space to accommodate temporary emergent behaviors in our life. Third, the compositional elements are reconstituted as space of organic property with dismantling steady relations. Especially, 'Soswaewon Garden's 48 poems(瀟灑園四十八詠)' will be the origin of the emotionally spatial experience to the current performers. Ultimately, the performer in the space of Soswaewon Garden simultaneously becomes a creator of space, and will generate new space with intertextuality with environment. Therefore, Soswaewon Garden becomes a place of binding me and the other together while maintaining mutual relationship based on organic thinking between a human being and nature and between the whole and a part.

The Development of Vulnerable Elements and Assessment of Vulnerability of Maeul-soop Ecosystem in Korea (한국 마을숲 생태계 취약요소 발굴 및 취약성 평가)

  • Lim, Jeong-Cheol;Ryu, Tae-Bok;Ahn, Kyeong-Hwan;Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Maeul-soop(Village forest) is a key element of Korean traditional village landscape historically and culturally. However, a number of Maeul-soops have been lost or declined due to various influences since the modern age. For this Maeul-soop that has a variety of conservation values including historical, cultural and ecological ones, attention and efforts for a systematic conservation and restoration of Maeul-soop are needed. The purpose of the present study is to provide information on ecological restoration and sustainable use and management of Maeul-soops based on component plant species, habitat and location characteristics of 499 Maeul-soops spread throughout Korea. Major six categories of threat factors to Maeul-soop ecosystem were identified and the influence of each factor was evaluated. For the evaluation of weight by threat factors for the influence on the vulnerability of Maeul-soop ecosystem, more three-dimensional analysis was conducted using Analytic Hierarchy Process (AHP) analysis method. In the results of evaluation using AHP analysis method, reduction of area, among six categories, was spotted as the biggest threat to existence of Maeul-soops. Next, changes in topography and soil environment were considered as a threat factor of qualitative changes in Maeul-soop ecosystem. Influence of vegetation structure and its qualitative changes on the loss or decline of Masul-soop was evaluated to be lower than that of changes in habitat. Based on weight of each factor, the figures were converted with 100 points being the highest score and the evaluation of vulnerability of Maeul-soop was conducted with the converted figures. In the result of evaluation of vulnerability of Maeul-soops, grade III showed the highest frequency and a normal distribution was formed from low grade to high grade. 38 Maeul-soops were evaluated as grade I which showed high naturality and 10 Maeul-soops were evaluated as grade V as their maintenance was threatened. Also in the results of evaluation of vulnerability of each Maeul-soop, restoration of Maeul-soop's own area was found as top priority to guarantee the sustainability of Maeul-soops. It was confirmed that there was a need to prepare a national level ecological response strategy for each vulnerability factor of Maeul-soop, which was important national ecological resources.

A Study on the Ordering Status of Traditional Landscape Design Service in Cultural Heritage (문화재의 전통조경설계용역 발주실태 연구)

  • Kim, Min-Seon;Kim, Choong-Sik;Lee, Jae-Yong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.3
    • /
    • pp.33-41
    • /
    • 2021
  • This study identified the scale that traditional landscape design has taken up by analyzing a total of 1037 services for design of cultural heritage that had been ordered by the government agencies from 2018 to 2020, and has drawn characteristics of traditional landscape design focusing on major cases. The results are as follows. First, the number of order cases for traditional landscape design has shown differences annually in the services of design of cultural heritage, but the design amount has been found to have the similar average annually, which confirmed that the same level has been maintained each year. It was found that the number of cases of traditional landscape design requiring responsibilities or participations of landscape engineers for 3 years in the entire design had a high proportion of approximately 26%. Second, the traditional landscape design has required professional knowledge and experiences of landscape engineers that could not be replaced by the business operator for design of cultural heritage consisting of architects. The expertise has been shown differently depending on types of construction. First, the topographical design for the work to build a foundation has required understanding of ground shapes and its elevations and professional knowledge on calculation of the amount of the earth work and the remains maintenance technique etc. The plantation design has required basic knowledge on growth characteristics of trees and the environment for growth and understanding of the vegetation landscape of the past. Meanwhile, the design for traditional pavement and traditional landscape structures and facilities has required the expertise on traditional materials that are different from the modern ones and their processing and construction methods. The understanding of changes to water paths and ecosystem, the principles of fluids, and characteristics of each type of fluid was essential for the design for the ecological landscape work including the maintenance of a water system such as rivers etc. As such, the traditional landscape design has a scale accounting for approximately one fourth of the entire cultural heritage design and requires the expertise differentiated from other fields. This improves the provisions of the current law on limiting the actual design, suggesting the need for the establishment of a traditional landscape design company so that all traditional landscape designs can be carried out by landscape engineers.

Identification of Bird Community Characteristics by Habitat Environment of Jeongmaek Using Self-organizing Map - Case Stuty Area Geumnamhonam and Honam, Hannamgeumbuk and Geumbuk, Naknam Jeongmaek, South Korea - (자기조직화지도를 활용한 정맥의 서식지 환경에 따른 조류 군집 특성 파악 - 금남호남 및 호남정맥, 한남금북 및 금북정맥, 낙남정맥을 대상으로 -)

  • Hwang, Jong-Kyeong;Kang, Te-han;Han, Seung-Woo;Cho, Hae-Jin;Nam, Hyung-Kyu;Kim, Su-Jin;Lee, Joon-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • This study was conducted to provide basic data for habitat management and preservation of Jeongmaek. A total of 18 priority research areas were selected with consideration to terrain and habitat environment, and 54 fixed plots were selected for three types of habits: development, valley, and forest road and ridge. The survey was conducted in each season (May, August, and October), excluding the winter season, from 2016 to 2018. The distribution analysis of birds observed in each habitat type using a self-organizing map (SOM) classified them into a total of four groups (MRPP, A=0.12, and p <0.005). The comparative analysis of the number of species, the number of individuals, and the species diversity index for each SOM group showed that they were all the highest in group III (Kruskal-Wallis, the number species: x2 = 13.436, P <0.005; the number of individuals: x2 = 8.229, P <0.05; the species diversity index: x2 = 17.115, P <0.005). Moreover, the analysis by applying the land cover map to the random forest model to examine the index species of each group and identify the characteristics of the habitat environment showed a difference in the ratio of the habitat environment and the indicator species among the four groups. The index species analysis identified a total of 18 bird species as the indicator species in three groups except for group II. When applying the random forest model and indicator species analysis to the results of classification into four groups using the SOM, the composition of the indicator species by the group showed a correlation with the habitat characteristics of each group. Moreover, the distribution patterns and densities of observed species were clearly distinguished according to the dominant habitat for each group. The results of the analysis that applied the SOM, indicator species, and random forest model together can derive useful results for the characterization of bird habitats according to the habitat environment.

Analysis on the Rainfall Triggered Slope Failure with a Variation of Soil Layer Thickness: Flume Tests (강우로 인한 조립토 사면에서의 토층 두께 변화에 따른 사면의 활동 분석: 실내 모형실험)

  • SaGong, Myung;Yoo, Jea-Ho;Lee, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.91-103
    • /
    • 2009
  • Slope failure depends upon the climatic features related to related rainfall, structural geology and geomorphological features as well as the variation of the mechanical behaviors of soil constituting a slope. In this paper, among many variables, effects of soil layer thickness on the slope failure process, and variations of matric suction and volumetric water content were observed. When the soil layer is relatively thick, the descending wetting front decreases matric suction and the observed matric suction reaches to "0" value. When the wetting front reaches to the impermeable boundary, the bottom surface of steel soil box, ascending wetting front was observed. This observation can be postulated to be the effects of various sizes of pores. When macro size pores exist, the capillary effects can be reduced and infilling of pore will be limited. The partially filled pores would be filled with water during the ascending of the wetting front, which bounces from the impermeable boundary. This assumption has been assured from the observation of variation of the volumetric water contents at different depth. When the soil layer is thick (thickness = 20 cm), for granular material, erosion is a cause triggering the slope failure. It has been found that the initiation of erosion occurs when the top soil is fully saturated. Meanwhile, when the soil layer is shallow (thickness = 10 cm), slope slides as en mass. The slope failure for this condition occurs when the wetting front reaches to the interface between the soil layer and steel soil box. As the wetting front approaches to the bottom of soil layer, reduction of shear resistance along the boundary and increase of the unit weight due to the infiltration occur and these produce complex effects on the slope failure processes.

Soil Physical Properties of Arable Land by Land Use Across the Country (토지이용별 전국 농경지 토양물리적 특성)

  • Cho, H.R.;Zhang, Y.S.;Han, K.H.;Cho, H.J.;Ryu, J.H.;Jung, K.Y.;Cho, K.R.;Ro, A.S.;Lim, S.J.;Choi, S.C.;Lee, J.I.;Lee, W.K.;Ahn, B.K.;Kim, B.H.;Kim, C.Y.;Park, J.H.;Hyun, S.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.344-352
    • /
    • 2012
  • Soil physical properties determine soil quality in aspect of root growth, infiltration, water and nutrient holding capacity. Although the monitoring of soil physical properties is important for sustainable agricultural production, there were few studies. This study was conducted to investigate the condition of soil physical properties of arable land according to land use across the country. The work was investigated on plastic film house soils, upland soils, orchard soils, and paddy soils from 2008 to 2011, including depth of topsoil, bulk density, hardness, soil texture, and organic matter. The average physical properties were following; In plastic film house soils, the depth of topsoil was 16.2 cm. For the topsoils, hardness was 9.0 mm, bulk density was 1.09 Mg $m^{-3}$, and organic matter content was 29.0 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.32 Mg $m^{-3}$, and organic matter content was 29.5 g $kg^{-1}$; In upland soils, depth of topsoil was 13.3 cm. For the topsoils, hardness was 11.3 mm, bulk density was 1.33 Mg $m^{-3}$, and organic matter content was 20.6 g $kg^{-1}$. For the subsoils, hardness was 18.8 mm, bulk density was 1.52 Mg $m^{-3}$, and organic matter content was 13.0 g $kg^{-1}$. Classified by the types of crop, soil physical properties were high value in a group of deep-rooted vegetables and a group of short-rooted vegetables soil, but low value in a group of leafy vegetables soil; In orchard soils, the depth of topsoil was 15.4 cm. For the topsoils, hardness was 16.1 mm, bulk density was 1.25 Mg $m^{-3}$, and organic matter content was 28.5 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.41 Mg $m^{-3}$, and organic matter content was 15.9 g $kg^{-1}$; In paddy soils, the depth of topsoil was 17.5 cm. For the topsoils, hardness was 15.3 mm, bulk density was 1.22 Mg $m^{-3}$, and organic matter content was 23.5 g $kg^{-1}$. For the subsoils, hardness was 20.3 mm, bulk density was 1.47 Mg $m^{-3}$, and organic matter content was 17.5 g $kg^{-1}$. The average of bulk density was plastic film house soils < paddy soils < orchard soils < upland soils in order, according to land use. The bulk density value of topsoils is mainly distributed in 1.0~1.25 Mg $m^{-3}$. The bulk density value of subsoils is mostly distributed in more than 1.50, 1.35~1.50, and 1.0~1.50 Mg $m^{-3}$ for upland and paddy soils, orchard soils, and plastic film house soils, respectively. Classified by soil textural family, there was lower bulk density in clayey soil, and higher bulk density in fine silty and sandy soil. Soil physical properties and distribution of topography were different classified by the types of land use and growing crops. Therefore, we need to consider the types of land use and crop for appropriate soil management.

Effects of Crimson Clover, Hairy Vetch, and Rye Residue Mulch on Weed Occurrence, Soybean Growth, and Yield in Soybean Fields (콩 재배 시 크림손클로버, 헤어리벳치, 호밀 예취물 피복이 잡초 발생과 콩 생육 및 수량에 미치는 영향)

  • Lee, Ji-Hyun;Lee, Byung-Mo;Shim, Sang-In;Lee, Youn;Jee, Hyeong-Jin
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.167-174
    • /
    • 2011
  • Weed control using cover crops has advantages of agricultural and environmental aspects which prevent soil erosion, nitrogen supply, improving soil physical properties, reduction of nitrate leaching, organic supply and control of weed occurrence. In this study, we evaluated the inhibitory effects of cover crops on the weed occurrence, growth and yield of soybean in cover crop-soybean cropping system. The treatments were consisted of 4 different mulching system such as crimson clover (Trifolium incarnatum) residue, hairy vetch (Vicia villosa) residue, rye (Secale cereale) residue and Polyethylene plastic(P.E.) mulch with no mulch treatment (control). Three cover crops were grown throughout the winter and were cut in next spring. And then 13 days old soybean seedlings were transplanted in each treatment field on $4^{th}$ June. Crimson clover, hairy vetch and rye mulch treatments reduced weeds density compared to control (73.0%, 98.0% and 85.3% respectively), on $26^{th}$ May. However, weed inhibition rate of crimson clover mulch treatment was sharply decreased to 4.17% on $6^{th}$ August, while hairy vetch and rye mulch treatments were continued high weed inhibition rate with 87.6% and 72.0% respectively. There was no inhibition effect of perennial, winter annual and broadleaf weeds inhibition in crimson clover mulch treatment. Height of soybean in crimson clover, hairy vetch and P.E. mulch treatment was 6.9%, 20.2% and 22.0% higher than that of control. But height of soybean in rye mulch treatment was lower than control on $13^{th}$ July. At harvesting, yields of soybean were in order of hairy vetch mulch treatment${\fallingdotseq}$ P.E. mulch treatment > crimson clover mulch treatment ${\fallingdotseq}$ rye mulch treatment > control.

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

Assessment of water supply reliability in the Geum River Basin using univariate climate response functions: a case study for changing instreamflow managements (단변량 기후반응함수를 이용한 금강수계 이수안전도 평가: 하천유지유량 관리 변화를 고려한 사례연구)

  • Kim, Daeha;Choi, Si Jung;Jang, Su Hyung;Kang, Dae Hu
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.993-1003
    • /
    • 2023
  • Due to the increasing greenhouse gas emissions, the global mean temperature has risen by 1.1℃ compared to pre-industrial levels, and significant changes are expected in functioning of water supply systems. In this study, we assessed impacts of climate change and instreamflow management on water supply reliability in the Geum River basin, Korea. We proposed univariate climate response functions, where mean precipitation and potential evaporation were coupled as an explanatory variable, to assess impacts of climate stress on multiple water supply reliabilities. To this end, natural streamflows were generated in the 19 sub-basins with the conceptual GR6J model. Then, the simulated streamflows were input into the Water Evaluation And Planning (WEAP) model. The dynamic optimization by WEAP allowed us to assess water supply reliability against the 2020 water demand projections. Results showed that when minimizing the water shortage of the entire river basin under the 1991-2020 climate, water supply reliability was lowest in the Bocheongcheon among the sub-basins. In a scenario where the priority of instreamflow maintenance is adjusted to be the same as municipal and industrial water use, water supply reliability in the Bocheongcheon, Chogang, and Nonsancheon sub-basins significantly decreased. The stress tests with 325 sets of climate perturbations showed that water supply reliability in the three sub-basins considerably decreased under all the climate stresses, while the sub-basins connected to large infrastructures did not change significantly. When using the 2021-2050 climate projections with the stress test results, water supply reliability in the Geum River basin was expected to generally improve, but if the priority of instreamflow maintenance is increased, water shortage is expected to worsen in geographically isolated sub-basins. Here, we suggest that the climate response function can be established by a single explanatory variable to assess climate change impacts of many sub-basin's performance simultaneously.

Vegetation on Basic, Alkaloid, Arid Land of the Whole Area of Baicheng City, Jilin Province, China (중국(中國) 길림성(吉林省) 백성시(白城市) 일대의 염성(鹽性), 알칼리성 건조지(乾操地) 식생(植生)에 관한 연구)

  • Ahn, Young-Hee;Wang, Bai-Cheng;Jin, Ying-Hua;Choe, Chang-Young;Xuan, Yong-Nan;Song, Dong-Ok
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.1
    • /
    • pp.90-98
    • /
    • 2009
  • Every spring, Korea is always plagued by sandy dust from the western region of China and Mongolia. Yellow sand is causing an environmental problem to Japan and far into the American continent, let alone Korea. At present, the western region of China is going under desertification at a great speed due to climatic change and humans' damaging activities. To cope with this, each country including China is considering ecological restoration of deserts through planting. Accordingly, this research conducted a vegetation survey on Baicheng district which is a representative dry land of western China to obtain a basic data for ecological restoration of a desert. The survey revealed that Setaria viridis which invaded an arid land made a succession into Setaria viridis-Cannabis sativa var. fruderalis community together with Artemisia mongolica-Setaria viridis community due to the increase in salt concentration and alkalization subsequent to dryness. It was also found out that there finally formed Artemisia mongolica community on a flat intense in harsh wind and dryness with the continuous worsening of environmental conditions. There appeared a different type of vegetation on hilly districts where sporadic shade could come into being because the air humidity could be available relatively there. Frequently, typically appearing at the whole survey area, the Tributlus terrestris community was found to make succession into Tribulus terrestris-Cleisrogenes squarrosa community due to the aggravation of soil environment. In addition, with the worsening of the environment at hilly districts, there formed Clesirogenes squarrosa community resistant to dryness, salinity in soil and strong alkalinity. Further, there appeared higher plant life totalling to 62 taxa comprising 58 species and 4 varieties with 27 families and 49 genuses at the whole survey area. Among these, Compositae plants excellent in resistance to environment was surveyed the most, accounting for 27%.