The purpose of this study is to investigate the effect of macro-finance variables on the correlation between the housing and stock markets because understanding the nature of time-varying correlations between different assets has important implications on portfolio allocation and risk management. Thus, we adopted the AG-DCC GARCH model to obtain time-varying, conditional correlations. Our sample ranged from January 2004 to November 2017. Our empirical result showed that the coefficients on asymmetric correlation were significantly positive, implying that correlations between the housing and stock markets were significantly higher when changes in the housing price and stock returns were negative. This finding suggested that the housing market has less hedging potential during a stock market downturn, when such a hedging strategy might be necessary. Based on the regression analysis, we found that the term spread had a significantly negative effect on correlations, while the credit spread had a significantly positive effect. This result could be interpreted by the risk premium effect.
We examine the relationship between the trading activities of Korea Stock Price Index (KOSPI) 200 futures contract and its underlying stock market volatility for about six years from May 1996 when the futures contract was introduced. The trading activities of the futures contracts are proxied by the volume and open interest, which are divided into expected and unexpected portions by using the previous data. The daily, intradilay, and overnight cash volatility is estimated by the GJR-GARCH model. We find a positive contemporaneous relationship between the intradaily stock market volatility and the unexpected futures volume while the relationship between the volatility and expected futures volume is weakly negative or non-existent. We also find that the unexpected futures volume strongly causes intradaily cash volatility. On the other hand, the overnight cash volatility causes the unexpected futures volume. The impulse responses between these variables are all positive. The result implies that during a trading time futures trading tends to increase the cash volatility while the unexpected overnight changes in cash volatility tends to increase the futures trading activities. We, however, find no association between the cash volatility and futures maturities.
Korean Journal of Construction Engineering and Management
/
v.9
no.2
/
pp.146-158
/
2008
This paper examines the relationship between the real estate policies of Korean government and the stock market of Korea. It is the purpose of this paper whether the government policies are effective or not when the Korean government release new real estate policies outlining higher taxes and more housing supply as part of its plan to suppress speculation. This paper studies the properties of daily stock returns of the construction sector in Korea securities market when the government announcements of the real estate policies are released. On the demand side, multiple home owners and those purchasing property for speculative purposes are expected to be hit the hardest If the government policies are effective. The empirical results of this paper show that most of the cumulative abnormal returns(CARs) are statistically significant from the year 2002 to the year 2006 except the year 2004.
Kim, Sunwoo;Jin, Wooseok;Kwak, Kihyun;Ko, Hyuk-Jin
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.16
no.6
/
pp.31-42
/
2021
The importance of startups and ventures in the Korean economy is growing. This study measured whether the start-up and venture ecosystem is growing, including the growth of startups and ventures. The startup and venture ecosystem consists of startups and ventures, investors, and government, which are the main actors of the 'ecosystem', and their movements were measured with 25 quantitative indicators. Based on the original data of the time series from 2010 to 2020, the startup and venture ecosystem index was calculated by applying weights through the comprehensive stock index method and AHP. In 2020, the startup and venture ecosystem grew 2.9 times compared to 2010, and the increase in the government index had a significant impact on growth. Also, the individual indicators that make up each index in 2020, the corporate index had the greatest impact on the growth of the number of 100-billion ventures, while the investment index had a recovery amount and the government index had a significant impact. Based on the original data, the startup and venture ecosystem index was analyzed by dividing it into ecosystems (startup ecosystem and venture ecosystem), industry by industry (all industries and manufacturing industry), and region (Korea and Busan). As a result, the growth of the startup ecosystem over the past decade has been slightly larger than that of the venture ecosystem. The manufacturing was lower than that of all industries, and Busan was lower than that of the nation. This study was intended to use it for the establishment and implementation of support policies by developing, measuring, and monitoring the startup and venture ecosystem index. This index has the advantage of being able to research the interrelationships between major actors, and anyone can calculate the index using the results of official statistical surveys. In the future, it is necessary to continuously update this content to understand how economic and social events or policy support have affected the startup and venture ecosystem.
The Journal of the Korea institute of electronic communication sciences
/
v.9
no.3
/
pp.377-386
/
2014
This study analyzed how alternative investment goods would affect a market in a neighboring shopping area in order to provide parties involved in the investment market of this neighboring shopping area with standards which would help them when they try to make a reasonable determination. The study estimated forms and explanation power of the effects of a bid rate of a neighboring shopping area, and came up with those results as follows. Increases in the representative macro economic indicators, the composite stock price index and the fluctuation rate of land price, including the real estate business would have a positive influence on the market of the neighboring shopping area as playing a circumstantial evidence of market recovery and yet, the increase in interest rate, the alternative investment goods, would reduce the relative price-earnings ratio which would, eventually, negatively affect the charm of the investment in the market of the neighboring shopping area. The study, now, understands that housing with a feature of consumers' goods and neighboring shopping area with a feature of investment goods would not have great concern with each other as they are observed to be two different markets from an aspect of interactionism.
This study analyzed the effects of M&A announcement before and after the 1998 amendments of 'Securities and Exchange Act' through the event study. The M&A firms turned out to gain the abnormal returns during the entire periods. The cumulative average abnormal returns of M&A firms was 1.38%(market adjusted model) or 5.37%(industry-adjusted model) higher after the 1998 amendments than before. The differences of performance of M&A were significant also in case of the related M&A, vertical or horizontal M&A, M&A in booms. In regression analysis, the 1998 amendments of Act was the significant factor to explain the cumulative abnormal returns.
Journal of the Korea Society of Computer and Information
/
v.14
no.5
/
pp.19-28
/
2009
Prediction problem of the time-series data has been a research issue for a long time among many researchers and a number of methods have been proposed in the literatures. In this paper, a method is proposed that similarities among time-series data are examined by use of Hidden Markov Model and Likelihood and future direction of the data movement is determined. Query sequence is modeled by Hidden Markov Modeling and then the model is examined over the pre-recorded time-series to find the subsequence which has the greatest similarity between the model and the extracted subsequence. The similarity is evaluated by likelihood. When the best subsequence is chosen, the next portion of the subsequence is used to predict the next phase of the data movement. A number of experiments with different parameters have been conducted to confirm the validity of the method. We used KOSPI to verify suggested method.
The purpose of this paper is to test the market timing hypothesis and impact of macro economic variables on capital structure choice as well as the traditional static trade-off and pecking order theories of capital structure in a integrated framework. Through a two stage test of target capital structure and capital structure choice, none of theories was consistently supported, but most of them were partly supported. In the first stage analysis of target ratio, coefficients of firm-specific variables generally supported the predictions of pecking order theory rather than those of the static trade-off theory. However, the result of the second stage test on capital structure choice supported the hypothesis of the static trade-off theory, which claims that firms usually set and pursue the target leverage ratio. Further, the result of the seconde stage shows that a simple pecking oder theory does not hold because firms with deficit of internal fund tend to issue bonds rather than stocks to raise outside fund. Also, the result indicates that the market timing hypothesis holds because firms with over-valued stocks tend to issue stocks rather than bonds. However, contrary to Korajczyk and Levy(2003), the impact of macro economic variables such as term or credit spreads on capital structure choice was negligible, and the impact of macro economic and market timing hypothesis variables were not greater in financially unconstrained firms as Korajczyk and Levy(2003) suggested.
Real estate has been the most preferable investment asset since 1980's has begun. Especially the ups and downs of housing price influence significantly on the household and national economy for a digital economy. In this analysis, monthly movement of apartment price of Seoul and its correlation with KOSPI, construction concerned shares, securities concerned shares, interest rate and exchange rate for 320 months(from January, 1987 to August, 2013) are shown. From the analysis, correlation coefficient of the price of apartment in Seoul and KOSPI is 0.8566 which is highly positive while the price of apartment in Seoul and interest rate are shown strong negative correlation which is -0.7846. The rise of stock market does affect the rise of the price of apartments in Seoul, on the contrary, the price goes down when the interest rate goes up.
In index investing according to KOSPI, we estimate Value at Risk(VaR) from the extreme losses of the daily returns which are obtained from KOSPI. To this end, we apply Block Maxima(BM) model which is one of the useful models in the extreme value theory. We also estimate the extremal index to consider the dependency in the occurrence of extreme losses. From the back-testing based on the failure rate method, we can see that the model is adaptable for the VaR estimation. We also compare this model with the GARCH model which is commonly used for the VaR estimation. Back-testing says that there is no meaningful difference between the two models if we assume that the conditional returns follow the t-distribution. However, the estimated VaR based on GARCH model is sensitive to the extreme losses occurred near the epoch of estimation, while that on BM model is not. Thus, estimating the VaR based on GARCH model is preferred for the short-term prediction. However, for the long-term prediction, BM model is better.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.