• Title/Summary/Keyword: 한국에너지연구소

Search Result 998, Processing Time 0.026 seconds

Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine (직접분사식 암모니아 전소 엔진에서 점화 시기와 공기과잉률의 변경에 따른 연소 및 배기, 효율 특성 비교)

  • Yonghun Jang;Cheolwoong Park;Yongrae Kim;Young Choi;Chanki Min;Seungwoo Lee;Hongkil Baek;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Due to the development of the industrial revolution, regulations on exhaust emissions have been continuously strengthened to reduce the rapidly increasing greenhouse gas emissions. The use of environmentally friendly fuels is essential to meet these regulations. Hydrogen has been attracting attention as a future environmentally friendly fuel, but due to its material properties, it faces significant challenges in handling and storage. As an alternative, ammonia has been proposed. Ammonia can be easily liquefied at room temperature compared to hydrogen and has a high energy density. In order to examine the applicability of ammonia as an engine fuel, experiments were conducted to investigate the effects of changes in combustion control parameters in a direct injection ammonia combustion engine. The experiments were conducted by varying two variables: spark timing and excessive air ratio. Observations were made on combustion stability and the trends of exhaust emissions such as nitrogen oxides and unburned ammonia under the conditions of an engine speed of 1,500 rpm and medium to high loads (brake torque of 200 Nm). By optimizing the combustion control parameters, conditions for stable combustion even when using ammonia as the sole fuel were identified, and plans are underway to apply strategies for future expansion of the operating range.

The effect of Temperature Reduction of Green roof for building energy-saving using Rainwater Storage Tank (건물 에너지 절약을 위한 저류 옥상 녹화의 온도 저감 효과)

  • Yun, Seok-hwan;Kim, Eun-sub;Piao, Zheng-gang;Kim, Sang-hyuck;Kim, Na-yeon;Hwang, Hye-mee;Je, Sang-woo;Kang, Han-min;Ham, Eun-kyung;Lee, Dong-kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.4
    • /
    • pp.51-59
    • /
    • 2023
  • Despite countries' efforts to reduce carbon emissions, carbon emissions have increased in recent decades along with energy use, of which building energy uses account for a large proportion. Energy savings are essential as a strategy to reduce carbon emissions in existing buildings. The field experiment on the roof of a building located in Seoul was designed to measure the temperature reduction effect of green roof with rainwater storage tank to reduce cooling energy consumption in summer. The results showed that the mean mean surface temperature under the green roof was 14.77 degrees lower than that of the non-green roof from 13:00 P.M. to 15:00 P.M., which would have a great effect on reducing cooling energy. From 01:00 A.M. to 03:00 A.M., the effect was 3.36 degrees, showing that tropical nights could be improved. The temperature reduction effect due to the rainwater storage system increased by 1.45 degrees during the day and decreased by 0.63 degrees at night. The storage system can be strategically utilized to reduce carbon emissions during the week when cooling energy increases significantly.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells (고분자연료전지의 화학적/기계적 내구성 평가 시간 단축)

  • Sohyeong Oh;Donggeun Yoo;Kim Myeonghwan;Park Jiyong;Choi Yeongjin;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.517-522
    • /
    • 2023
  • A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.

Analysis of the abroad and domestic research trends on climate change and its economical effect on the power plant (기후변화협약 시행에 따른 대응 방안 및 발전분야 영향 분석)

  • Woo, Kwangje;Hwang, Jae Dong;Jeong, Seok Yong;Jang, Gil Hong
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.43-49
    • /
    • 2001
  • To meet $CO_2$ emission regulation, this study describes the present state of $CO_2$ reduction technology and the effect of the regulation on power industry. In Japan, R&D investment is actively continuing through a long-term R&D project, along with trying to meet the reduction demand by the ways of energy saving and abroad business. EU has made a lot of investments in increasing the efficiency of power generation and developing alternative energy sources. The US is making provision of the portion of reduction by using energy saving program and emission trading, and the current DOE-driven program is addressing the development of cost-effective power systems. In the country, the research to reduce $CO_2$ emission has been mainly driven by the government and research institute supported by the government. Meanwhile, if the reduction obligation imposed on Portugal which is the least strict condition will be enforced in Korea, it is likely that about 50 running power plants should be stopped or shut down after 2015, in spite of voluntary reduction efforts such as conversion to clean fuels, etc. according to the government's long-term electric power need and supply plan.

  • PDF

A Study of Economic Efficiency and Environmental Performance Due to the Conversion of the 7th and 8th Basic Plan for Long-term Power Supply and Demand (제7차 및 제8차 전력수급기본계획 전원 구성 전환에 따른 경제성 및 환경성 변화 분석 연구)

  • Cho, Sungjin;Yoon, Teayeon;Kim, Yoon Kyung
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.201-229
    • /
    • 2019
  • This paper estimates the effects of generation mix changes in the $7^{th}$ and $8^{th}$ Basic Plan for Long-term Power Supply and Demand from two aspects: economic efficiency through electricity prices and environmental performance through $CO_2$ and air pollutants(NOx, SOx, PM) emissions. Particularly, we examined additional generation mix conversion paths that take into account the trade-off between economic efficiency and environmental performance through scenario analysis. According to our results, the conversion from the $7^{th}$ plan to the $8^{th}$ plan should increase the electricity prices in the mid- and long-term, while reducing GHG and air pollutants emissions at the same time. The alternative generation mix that combines $7^{th}$ and $8^{th}$ plans shows that there exists a path to mitigate the trade-off between economic and environmental in the long-term. It will be next to impossible to derive a optimal generation mix that simultaneously considers the core values, such as supply stability, environmental performance, economic efficiency, energy safety and energy security, when establishing the power supply and demand plan. However, by exploring the effects of various generation mix paths and suggesting near-optimal paths, people can best choose their direction after weighhing all the paths when deciding on a forward-looking generation mix in the long term.

Development of Anion Exchange Membrane based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) for Alkaline Fuel Cell Application (화학적 가교를 이용한 Poly(2,6-dimethyl-1,4-phenylene oxde)계 음이온 교환막의 제조 및 알칼리 연료전지용 특성평가)

  • Sung, Seounghwa;Lee, Boryeon;Choi, Ook;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.173-182
    • /
    • 2019
  • Much research has been made for finding new and eco-friendly alternative sources of energy to solve the problems related with the pollution caused by emissions of greenhouse gases such as carbon dioxide as the use of fossil fuels increases worldwide. Among them, fuel cells draws particular interests as an eco-friendly energy generator because only water is obtained as a by-product. Anion exchange membrane-based alkaline fuel cell (AEMFC) that uses anion exchange membrane as an electrolyte is of increased interest recently because of its advantages in using low-cost metal catalyst unlike the PEMFC (potton exchange membrane fuel cell) due to the high-catalyst activity in alkaline conditions. The main properties required as an anion exchange membrane are high hydroxide conductivity and chemical stability at high pH. Recently we reported a chemically crosslinked poly(2-dimethyl-1,4-phenylene oxide) (PPO) by reacting PPO with N,N,N',N'-tetramethyl-1,6-hexanediamine as novel anion exchange membranes. In the current work, we further developed the same crosslinked polymer but having enhanced physicochemical properties, including higher conductivity, increased mechanical and dimensional stabilities by using the PPO with a higher molecular weight and also by increasing the crosslinking density. The obtained polymer membrane also showed a good cell performance.

Development of Greenhouse Cooling and Heating Load Calculation Program Based on Mobile (모바일 기반 온실 냉난방 부하 산정 프로그램 개발)

  • Moon, Jong Pil;Bang, Ji Woong;Hwang, Jeongsu;Jang, Jae Kyung;Yun, Sung Wook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.419-428
    • /
    • 2021
  • In order to develope a mobile-based greenhouse energy calculation program, firstly, the overall thermal transmittance of 10 types of major covers and 16 types of insulation materials were measured. In addition, to estimate the overall thermal transmittance when the cover and insulation materials were installed in double or triple layers, 24 combinations of double installations and 59 combinations of triple installations were measured using the hotbox. Also, the overall thermal transmittance value for a single material and the thermal resistance value were used to calculate the overall thermal transmittance value at the time of multi-layer installation of covering and insulating materials, and the linear regression equation was derived to correct the error with the measured values. As a result of developing the model for estimating thermal transmittance when installing multiple layers of coverings and insulating materials based on the value of overall thermal transmittance of a single-material, the model evaluation index was 0.90 (good when it is 0.5 or more), indicating that the estimated value was very close to the actual value. In addition, as a result of the on-site test, it was evaluated that the estimated heat saving rate was smaller than the actual value with a relative error of 2%. Based on these results, a mobile-based greenhouse energy calculation program was developed that was implemented as an HTML5 standard web-based mobile web application and was designed to work with various mobile device and PC browsers with N-Screen support. It had functions to provides the overall thermal transmittance(heating load coefficient) for each combination of greenhouse coverings and thermal insulation materials and to evaluate the energy consumption during a specific period of the target greenhouse. It was estimated that an energy-saving greenhouse design would be possible with the optimal selection of coverings and insulation materials according to the region and shape of the greenhouse.

Characteristics of Remote Sensors on KOMPSAT-I (다목적 실용위성 1호 탑재 센서의 특성)

  • 조영민;백홍렬
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Korea Aerospace Research Institute(KARI) is developing a Korea Multi-Purpose Satellite I(KOMPSAT-I) which accommodates Electro-Optical Camera(EOC), Ocean Color Imager(OCI), Space Physics Sensor(SPS) for cartography, ocean color monitoring, and space environment monitoring respectively. The satellite has the weight of about 500 kg and is operated on the sun synchronized orbit with the altitude of 685km, the orbit period of 98 minutes, and the orbit revisit time of 28days. The satellite will be launched in the third quarter of 1999 and its lifetime is more than 3 years. EOC has cartography mission to provide images for the production of scale maps, including digital elevation models, of Korea from a remote earth view in the KOMPSAT orbit. EOC collects panchromatic imagery with the ground sample distance(GSD) of 6.6m and the swath width of 15km at nadir through the visible spectral band of 510-730 nm. EOC scans the ground track of 800km per orbit by push-broom and body pointed method. OCI mission is worldwide ocean color monitoring for the study of biological oceanography. OCI is a multispectral imager generating 6 color ocean images with and <1km GSD by whisk-broom scanning method. OCI is designed to provide on-orbit spectral band selectability in the spectral range from 400nm to 900nm. The color images are collected through 6 primary spectral bands centered at 443, 490, 510, 555, 670, 865nm or 6 spectral bands selected in the spectral range via ground commands after launch. SPS consists of High Energy Particle Detector(HEPD) and Ionosphere Measurement Sensor(IMS). HEPD has mission to characterize the low altitude high energy particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities in KOMPSAT orbit.

Geothermal Research and Development in Korea (한국의 지열 연구와 개발)

  • Song, Yoon-Ho;Kim, Hyoung-Chan;Lee, Sang-Kyu
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.485-494
    • /
    • 2006
  • This paper summarizes the history of geothermal research in Korea since 1920s and also describes the present status of research on heat flow, origin of thermal waters and geothermal exploitation and utilization. Geothermal research in Korea has been mainly related with hot spring investigation until 1970s. 1t was not until 1980s before heat flow study became continuous by research institute and academia and first nation-scale geothermal gradient map and heat flow map were published in 1996. Also in 1990s, geochemical isotope analysis of Korean hot spring waters and measurements of heat production rate of some granite bodies were made. Attempts to develop and utilize the deep geothermal water has been tried from early 1990s but field scale exploitations for geothermal water was activated in 2000s. Considering recent increase of demands on both deep and shallow geothermal energy utilization, outlook on future goethermal research and development is encouraging.