Annual Conference on Human and Language Technology
/
2021.10a
/
pp.453-456
/
2021
대화형 에이전트가 일관성 없는 답변, 재미 없는 답변을 하는 문제를 해결하기 위하여 최근 페르소나 기반의 대화 분야의 연구가 활발히 진행되고 있다. 그러나 한국어로 구축된 페르소나 대화 데이터는 아직 구축되지 않은 상황이다. 이에 본 연구에서는 영어 원본 데이터에서 한국어로 번역된 데이터를 활용하여 최초의 페르소나 기반 한국어 대화 모델을 제안한다. 전처리를 통하여 번역 품질을 향상시킨 데이터에 사전 학습 된 한국어 모델인 KoBERT와 KoELECTRA를 미세조정(fine-tuning) 시킴으로써 모델에게 주어진 페르소나와 대화 맥락을 고려하여 올바른 답변을 선택하는 모델을 학습한다. 실험 결과 KoELECTRA-base 모델이 가장 높은 성능을 보이는 것을 확인하였으며, 단순하게 사용자의 발화만을 주는 것 보다 이전 대화 이력이 추가적으로 주어졌을 때 더 좋은 성능을 보이는 것을 확인할 수 있었다.
Yohan Lee;Hyun Kim;Jonghun Shin;Minsoo Cho;Ohwoog Kwon;Youngkil Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.512-516
/
2022
페르소나 기반의 대화 시스템은 일관적인 대화를 수행할 수 있어 많은 관심을 받고 있다. 영어권에서 구축된 페르소나 대화 데이터셋은 서로의 페르소나를 알아가기 보다는 자신의 페르소나에 대해서만 말하는 경향을 보이며 이는 상대방의 말을 이해하여 관련 대화를 진행하는 대화의 특성을 반영하지 못한다. 본 연구에서는 회사 방문객이 안내 시스템과 대화하는 상황을 가정하여 안내 시스템이 주도적으로 방문객의 페르소나를 묻고 관련 대화를 수행하는 데이터셋을 구축함과 동시에 목적지향 대화 시스템의 대화 관리 프레임워크를 기반으로 시스템 주도적인 대화를 모델링하는 페르소나 대화 관리 모델을 제안한다. 실험을 통해 제안한 대화 관리 모델의 대화 이해 및 정책 성능을 검증하고 방문객의 페르소나를 예측할 때 대화 정책의 성능이 향상됨을 보임으로써 구축한 데이터셋이 이해와 정책이 포함된 대화의 특성을 반영하는 것을 확인한다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.205-209
/
2022
페르소나 대화 시스템이 상대방의 개인화된 정보에 일관된 응답을 생성하는 것은 상당히 중요하며, 이를 해결하기 위해 최근에 많은 연구들이 활발히 이루어지고 있다. 그 중, PersonaChat 데이터셋에 대해 수반/중립/모순 관계를 라벨링한 DialoguNLI 데이터셋이 제안되었으며, 일관성 측정, 페르소나 속성 추론 태스크 등 여러 분야에 활용되고 있다. 그러나, 공개적으로 이용가능한 한국어로 된 대화 추론 데이터셋은 없다. 본 연구에서는 한국어로 번역된 페르소나 대화 데이터셋과 한국어 자연어 추론 데이터셋에 학습된 모델을 이용하여 한국어 대화 추론 데이터셋(KorDialogueNLI)를 구축한다. 또한, 사전학습된 언어모델을 학습하여 한국어 대화 추론 모델 베이스라인도 구축한다. 실험을 통해 정확도 및 F1 점수 평가 지표에서 KLUE-RoBERTa 모델을 미세조정(fine-tuning)시킨 모델이 가장 높은 성능을 달성하였다. 코드 및 데이터셋은 https://github.com/passing2961/KorDialogueNLI에 공개한다.
Bit-Na Keum;Hong-Jin Kim;Jin-Xia Huang;Oh-Woog Kwon;Hark-Soo Kim
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.281-286
/
2023
더욱 사람같은 대화 모델을 실현하기 위해, 페르소나 메모리를 활용하여 응답을 생성하는 연구들이 활발히 진행되고 있다. 다수의 기존 연구들에서는 메모리로부터 관련된 페르소나를 찾기 위해 별도의 검색 모델을 이용한다. 그러나 이는 전체 시스템에 속도 저하를 일으키고 시스템을 무겁게 만드는 문제가 있다. 또한, 기존 연구들은 페르소나를 잘 반영해 응답하는 능력에만 초점을 두는데, 그 전에 페르소나 참조의 필요성 여부를 판별하는 능력이 선행되어야 한다. 따라서, 우리의 제안 모델은 검색 모델을 활용하지 않고 생성 모델의 내부적인 연산을 통해 페르소나 메모리의 참조가 필요한지를 판별한다. 참조가 필요하다고 판단한 경우에는 관련된 페르소나를 반영하여 응답하며, 그렇지 않은 경우에는 대화 컨텍스트에 집중하여 응답을 생성한다. 실험 결과를 통해 제안 모델이 장기적인 대화에서 효과적으로 동작함을 확인하였다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.726-729
/
2023
본 논문에서는 대화 중 발화에서 페르소나 트리플을 추출하는 방법을 연구한다. 발화 문장과 그에 해당하는 트리플 쌍을 활용하여 발화 문장 혹은 페르소나 문장이 주어졌을 때 그로부터 페르소나 트리플을 추출하도록 모델을 멀티 태스크 러닝 방식으로 학습시킨다. 모델은 인코더-디코더 구조를 갖는 사전학습 언어모델 BART [1]와 T5 [2]를 활용하며 relation 추출과 tail 추출의 두 가지 태스크를 각각 인코더, 디코더 위에 head를 추가하여 학습한다. Relation 추출은 분류로, tail 추출은 생성 문제로 접근하도록 하여 최종적으로 head, relation, tail의 구조를 갖는 페르소나 트리플을 추출하도록 한다. 실험에서는 BART와 T5를 활용하여 각 태스크에 대해 다른 학습 가중치를 두어 훈련시켰고, 두 모델 모두 relation과 tail을 추출하는 태스크 정확도에 있어서 90% 이상의 높은 점수를 보임을 확인했다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.491-494
/
2020
최근 언어 모델(Language model)의 기술이 발전함에 따라, 자연어처리 분야의 많은 연구들이 좋은 성능을 내고 있다. 정해진 주제 없이 인간과 잡담을 나눌 수 있는 오픈 도메인 대화 시스템(Open-domain dialogue system) 분야에서 역시 이전보다 더 자연스러운 발화를 생성할 수 있게 되었다. 언어 모델의 발전은 응답 선택(Response selection) 분야에서도 모델이 맥락에 알맞은 답변을 선택하도록 하는 데 기여를 했다. 하지만, 대화 모델이 답변을 생성할 때 일관성 없는 답변을 만들거나, 구체적이지 않고 일반적인 답변만을 하는 문제가 대두되었다. 이를 해결하기 위하여 화자의 개인화된 정보에 기반한 대화인 페르소나(Persona) 대화 데이터 및 태스크가 연구되고 있다. 페르소나 대화 태스크에서는 화자마다 주어진 페르소나가 있고, 대화를 할 때 주어진 페르소나와 일관성이 있는 답변을 선택하거나 생성해야 한다. 이에 우리는 대용량의 코퍼스(Corpus)에 사전 학습(Pre-trained) 된 언어 모델을 활용하여 더 적절한 답변을 선택하는 페르소나 대화 시스템에 대하여 논의한다. 언어 모델 중 자기 회귀(Auto-regressive) 방식으로 모델링을 하는 GPT-2, DialoGPT와 오토인코더(Auto-encoder)를 이용한 BERT, 두 모델이 결합되어 있는 구조인 BART가 실험에 활용되었다. 이와 같이 본 논문에서는 여러 종류의 언어 모델을 페르소나 대화 태스크에 대해 비교 실험을 진행했고, 그 결과 Hits@1 점수에서 BERT가 가장 우수한 성능을 보이는 것을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.491-496
/
2022
최근 멀티-세션 데이터로 장기간 페르소나와 대화 일관성을 유지하며 인터넷에서 대화와 관련된 지식을 활용하는 대화모델 연구가 활발히 진행되고 있다. 하지만 이를 위한 한국어 멀티-세션 오픈 도메인 지식 기반 대화 데이터는 공개되지 않아 한국어 대화모델 연구에 어려움이 있다. 따라서 본 논문에서는 한국어 멀티-세션 오픈 도메인 지식 기반 데이터의 필요성을 시사하고, 데이터 수집을 위한 툴을 제안한다. 제안하는 수집 툴은 양질의 데이터 수집을 위해 작업자들이 사용하기 편하도록 UI/UX를 구성하였으며, 대화 생성 시 텍스트뿐만 아니라 정보가 밀집된 테이블도 대화에 활용할 지식으로 참조할 수 있도록 구현하였다. 제안하는 수집 툴은 웹 랜덤채팅 시스템에 기반을 두어 작업자가 여러 다른 작업자와 같은 확률로 매칭되게 구현되었으며, 일정 확률로 기존 대화로부터 대화를 시작하도록 함으로써 멀티-세션 대화 수집이 가능하도록 하였다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.77-81
/
2022
최근 사전학습 언어모델에 내재된 지식을 최대한으로 활용하고자 태스크에 대한 설명을 입력으로 주는 manual prompt tuning 방법과 자연어 대신 학습가능한 파라미터로 태스크에 대한 이해를 돕는 soft prompt tuning 방법론이 자연어처리 분야에서 활발히 연구가 진행되고 있다. 이에 본 연구에서는 페르소나 대화 생성 태스크에서 encoder-decoder 구조 기반의 사전학습 언어모델 BART를 활용하여 manual prompt tuning 및 soft prompt tuning 방법을 고안하고, 파인튜닝과의 성능을 비교한다. 전체 학습 데이터에 대한 실험 뿐 아니라, few-shot 세팅에서의 성능을 확인한다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.49-53
/
2019
챗봇은 사람과 컴퓨터가 자연어로 대화를 주고받는 시스템을 말한다. 최근 챗봇에 대한 연구가 활발해지면서 단순히 기계적인 응답보다 사용자가 원하는 개인 특성이 반영된 챗봇에 대한 연구도 많아지고 있다. 기존 연구는 하나의 벡터를 사용하여 한 가지 형태의 페르소나 정보를 모델에 반영했다. 하지만, 페르소나는 한 가지 형태로 정의할 수 없어서 챗봇 모델에 페르소나 정보를 다양한 형태로 반영시키는 연구가 필요하다. 따라서, 본 논문은 최신 생성 기반 Multi-Turn 챗봇 시스템을 기반으로 챗봇이 다양한 형태로 페르소나를 반영하게 하는 방법을 제안한다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.293-299
/
2021
본 논문은 외국어 학습을 위한 딥러닝 기반 영어 교육 플랫폼인 PEEP-Talk (Personalized English Education Platform)을 제안한다. PEEP-Talk는 딥러닝 기반 페르소나 대화 시스템과 영어 문법 교정 피드백 기능이 내장된 교육용 플랫폼이다. 또한 기존 페르소나 대화시스템과 다르게 대화의 흐름이 벗어날 시 이를 자동으로 판단하여 대화 주제를 실시간으로 변경할 수 있는 CD (Context Detector) 모듈을 제안하며 이를 적용하여 실제 사람과 대화하는 듯한 느낌을 사용자에게 줄 수 있다. 본 논문은 PEEP-Talk의 각 모듈에 대한 정량적인 분석과 더불어 CD 모듈을 객관적으로 판단할 수 있는 새로운 성능 평가지표인 CDM (Context Detector Metric)을 기반으로 PEEP-Talk의 강건함을 검증하였다. 이와 더불어 PEEP-Talk를 카카오톡 채널을 이용하여 배포하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.