• Title/Summary/Keyword: 한국어 코퍼스

Search Result 245, Processing Time 0.025 seconds

Construction and Evaluation of a Sentiment Dictionary Using a Web Corpus Collected from Game Domain (게임 도메인 웹 코퍼스를 이용한 감성사전 구축 및 평가)

  • Jeong, Woo-Young;Bae, Byung-Chull;Cho, Sung Hyun;Kang, Shin-Jin
    • Journal of Korea Game Society
    • /
    • v.18 no.5
    • /
    • pp.113-122
    • /
    • 2018
  • This paper describes an approach to building and evaluating a sentiment dictionary using a Web corpus in the game domain. To build a sentiment dictionary, we collected vocabulary based on game-related web documents from a domestic portal site, using the Twitter Korean Processor. From the collected vocabulary, we selected the words whose POS are tagged as either verbs or adjectives, and assigned sentiment score for each selected word. To evaluate the constructed sentiment dictionary, we calculated F1 score with precision and recall, using Korean-SWN that is based on English Senti-word Net(SWN). The evaluation results show that average F1 scores are 0.85 for adjectives and 0.77 for verbs, respectively.

Correlation analysis of antipsychotic dose and speech characteristics according to extrapyramidal symptoms (추체외로 증상에 따른 항정신병 약물 복용량과 음성 특성의 상관관계 분석)

  • Lee, Subin;Kim, Seoyoung;Kim, Hye Yoon;Kim, Euitae;Yu, Kyung-Sang;Lee, Ho-Young;Lee, Kyogu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.367-374
    • /
    • 2022
  • In this paper, correlation analysis between speech characteristics and the dose of antipsychotic drugs was performed. To investigate the pattern of speech characteristics of ExtraPyramidal Symptoms (EPS) related to voice change, a common side effect of antipsychotic drugs, a Korean-based extrapyramidal symptom speech corpus was constructed through the sentence development. Through this, speech patterns of EPS and non-EPS groups were investigated, and in particular, a strong speech feature correlation was shown in the EPS group. In addition, it was confirmed that the type of speech sentence affects the speech feature pattern, and these results suggest the possibility of early detection of antipsychotics-induced EPS based on the speech features.

Frequency of grammar items for Korean substitution of /u/ for /o/ in the word-final position (어말 위치 /ㅗ/의 /ㅜ/ 대체 현상에 대한 문법 항목별 출현빈도 연구)

  • Yoon, Eunkyung
    • Phonetics and Speech Sciences
    • /
    • v.12 no.1
    • /
    • pp.33-42
    • /
    • 2020
  • This study identified the substitution of /u/ for /o/ (e.g., pyəllo [pyəllu]) in Korean based on the speech corpus as a function of grammar items. Korean /o/ and /u/ share the vowel feature [+rounded], but are distinguished in terms of tongue height. However, researchers have reported that the merger of Korean /o/ and /u/ is in progress, making them indistinguishable. Thus, in this study, the frequency of the phonetic manifestation /u/ of the underlying form of /o/ for each grammar item was calculated in The Korean Corpus of Spontaneous Speech (Seoul Corpus 2015) which is a large corpus from a total of 40 speakers from Seoul or Gyeonggi-do. It was then confirmed that linking endings, particles, and adverbs ending with /o/ in the word-final position were substituted for /u/ approximately 50% of the stimuli, whereas, in nominal items, they were replaced at a frequency of less than 5%. The high rates of substitution were the special particle "-do[du]" (59.6%) and the linking ending "-go[gu]" (43.5%) among high-frequency items. Observing Korean pronunciation in real life provides deep insight into its theoretical implications in terms of speech recognition.

A Korean menu-ordering sentence text-to-speech system using conformer-based FastSpeech2 (콘포머 기반 FastSpeech2를 이용한 한국어 음식 주문 문장 음성합성기)

  • Choi, Yerin;Jang, JaeHoo;Koo, Myoung-Wan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.359-366
    • /
    • 2022
  • In this paper, we present the Korean menu-ordering Sentence Text-to-Speech (TTS) system using conformer-based FastSpeech2. Conformer is the convolution-augmented transformer, which was originally proposed in Speech Recognition. Combining two different structures, the Conformer extracts better local and global features. It comprises two half Feed Forward module at the front and the end, sandwiching the Multi-Head Self-Attention module and Convolution module. We introduce the Conformer in Korean TTS, as we know it works well in Korean Speech Recognition. For comparison between transformer-based TTS model and Conformer-based one, we train FastSpeech2 and Conformer-based FastSpeech2. We collected a phoneme-balanced data set and used this for training our models. This corpus comprises not only general conversation, but also menu-ordering conversation consisting mainly of loanwords. This data set is the solution to the current Korean TTS model's degradation in loanwords. As a result of generating a synthesized sound using ParallelWave Gan, the Conformer-based FastSpeech2 achieved superior performance of MOS 4.04. We confirm that the model performance improved when the same structure was changed from transformer to Conformer in the Korean TTS.

Pronunciation of the Korean diphthong /jo/: Phonetic realizations and acoustic properties (한국어 /ㅛ/의 발음 양상 연구: 발음형 빈도와 음향적 특징을 중심으로)

  • Hyangwon Lee
    • Phonetics and Speech Sciences
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2023
  • The purpose of this study is to determine how the Korean diphthong /jo/ shows phonetic variation in various linguistic environments. The pronunciation of /jo/ is discussed, focusing on the relationship between phonetic variation and the distribution range of vowels. The location in a word (monosyllable, word-initial, word-medial, word-final) and word class (content word, function word) were analyzed using the speech of 10 female speakers of the Seoul Corpus. As a result of determining the frequency of appearance of /jo/ in each environment, the pronunciation type and word class were affected by the location in a word. Frequent phonetic reduction was observed in the function word /jo/ in the acoustic analysis. The word class did not change the average phonetic values of /jo/, but changed the distribution of individual tokens. These results indicate that the linguistic environment affects the phonetic distribution of vowels.

CNN-based Distant Supervision Relation Extraction Model with Multi-sense Word Embedding (다중-어의 단어 임베딩을 적용한 CNN 기반 원격 지도 학습 관계 추출 모델)

  • Nam, Sangha;Han, Kijong;Kim, Eun-Kyung;Gwon, Seong-Gu;Jeong, Yu-Seong;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.137-142
    • /
    • 2017
  • 원격 지도 학습은 자동으로 매우 큰 코퍼스와 지식베이스 간의 주석 데이터를 생성하여 기계 학습에 필요한 학습 데이터를 사람의 손을 빌리지 않고 저렴한 비용으로 만들 수 있어, 많은 연구들이 관계 추출 문제를 해결하기 위해 원격 지도 학습 방법을 적용하고 있다. 그러나 기존 연구들에서는 모델 학습의 입력으로 사용되는 단어 임베딩에서 단어의 동형이의어 성질을 반영하지 못한다는 단점이 있다. 때문에 서로 다른 의미를 가진 동형이의어가 하나의 임베딩 값을 가지다 보니, 단어의 의미를 정확히 파악하지 못한채 관계 추출 모델을 학습한다고 볼 수 있다. 본 논문에서는 원격 지도 학습 기반 관계 추출 모델에 다중-어의 단어 임베딩을 적용한 모델을 제안한다. 다중-어의 단어 임베딩 학습을 위해 어의 중의성 해소 모듈을 활용하였으며, 관계 추출 모델은 문장 내 주요 특징을 효율적으로 파악하는 모델인 CNN과 PCNN을 활용하였다. 본 논문에서 제안하는 다중-어의 단어 임베딩 적용 관계추출 모델의 성능을 평가하기 위해 추가적으로 2가지 방식의 단어 임베딩을 학습하여 비교 평가를 수행하였고, 그 결과 어의 중의성 해소 모듈을 활용한 단어 임베딩을 활용하였을 때 관계추출 모델의 성능이 향상된 결과를 보였다.

  • PDF

Grammatical Properties of Kes Constructions in a Speech Corpus (연설문 말뭉치에서 나타나는 '것' 구문의 문법적 특징)

  • Kim, Jong-Bok;Lee, Seung-Han;Kim, Kyung-Min
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.3
    • /
    • pp.257-281
    • /
    • 2008
  • The expression 'kes' is one of the most widely used ones in the language whose uses are highly dependent upon the context. These highly-context dependent uses make it hard to determine its grammatical properties. As a way of examining the properties in a rather controlled context, this paper collects a series of speeches made by government officials and examines the grammatical properties of the expression in the corpus. In particular, the paper, based on the 539 instances of 'kes' uses extracted from the corpus, focuses on the 7 types of 'kes' constructions most widely used in the collected speech corpus.

  • PDF

Automatic Construction of Generalized Lexical Information for Syntactic Ambiguity Resolution (구문 분석에서의 중의성 해소를 위한 일반화된 어휘정보의 자동 구축 및 적용)

  • Chung, Hoo-Jung;Hwang, Young-Sook;Kwak, Yong-Jae;Park, So-Young;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.269-275
    • /
    • 1998
  • 구문 분석에서의 중의성을 해결하는 데 어휘정보가 유용하다는 것은 잘 알려져 있다. 그러나 기존의 어휘정보 구축 방법들은 많은 수작업을 요구하거나, 자동으로 구축하는 경우에는 어휘 자체를 그대로 사용함에 따라 심각한 자료 회귀성 문제가 발생했다. 본 논문에서는 구문 분석에서의 중의성 해소를 위해 원시 코퍼스와 시소러스를 이용하여 개념 수준(conceptual-level)의 일반화된 술어-인자 어휘정보를 자동으로 구축하고, 이를 파서에 적용하는 방법을 제안하고자 한다. 제안한 방법으로 구축한 일반화된 어휘정보를 파서를 이용하여 명사구의 지배소 결정 실험에 적용하여 본 결과, 정확도가 85.9%에서 91.5%로 향상되었다. 또, 미지격 결정 실험에 대해서는 86.32 %의 격 결정 성공률을 보여주었다.

  • PDF

A Hybrid N-best Part-of-Speech Tagger for English-Korean Machine Translation (영한 기계 번역을 위한 혼합형 N-best 품사 태거)

  • Lim, Heui-Seok;Kwon, Cheol-Joong;Lee, Jae-Won;Oh, Ki-Eun
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.15-19
    • /
    • 1998
  • 기계 번역 시스템에서 품사 태거의 오류는 전체번역 정확률에 결정적인 영향을 미친다. 따라서 어휘 단계의 정보만으로는 중의성 해소가 불가능한 단어에 대해서는 중의성 해소에 충분한 정보를 얻을 수 있는 구문 분석이나 의미 분석 단계까지 완전한 중의성 해소를 유보하는 N-best 품사 태거가 요구된다. 또한 N-best 품사 태거는 단어에 할당되는 평균 품사 개수를 최소화함으로써 상위 단계의 부하를 줄이는 본연의 역할을 수행하여야 한다. 본 논문은 통계 기반 품사 태깅 방법을 이용하여 N-best 후보를 선정하고, 선정된 N-best 후보에 언어 규칙을 적용하여 중의성을 감소시키거나 오류를 보정하는 혼합형 N-best 품사 태깅 방법을 제안한다 제안된 N-best 품사 태거는 6만여 단어의 영어 코퍼스에서 실험한 결과, 단어 당 평균 1.09개의 품사를 할당할 때 0.43%의 오류율을 보인다.

  • PDF

Automatic word clustering using total divergence to the average (평균점에 대한 불일치의 합을 이용한 자동 단어 군집화)

  • Lee, Ho;Seo, Hee-Chul;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.419-424
    • /
    • 1998
  • 본 논문에서는 단어들의 분포적 특성을 이용하여 자동으로 단어를 군집화(clustering) 하는 기법을 제시한다. 제안된 군집화 기법에서는 단어들 사이의 거리(distance)를 가상 공간상에 있는 두 단어의 평균점에 대한 불일치의 합(total divergence to the average)으로 측정하며 군집화 알고리즘으로는 최소 신장 트리(minimal spanning tree)를 이용한다. 본 논문에서는 이 기법에 대해 두 가지 실험을 수행한다. 첫 번째 실험은 코퍼스에서 상위 출현 빈도를 가지는 약 1,200 개의 명사들을 의미에 따라 군집화 하는 것이며 두 번째 실험은 이 논문에서 제시한 자동 군집화 방법의 성능을 객관적으로 평가하기 위한 것으로 가상 단어(pseudo word)에 대한 군집화이다. 실험 결과 이 방법은 가상 단어에 대해 약 91%의 군집화 정확도와(clustering precision)와 약 81%의 군집 순수도(cluster purity)를 나타내었다. 한편 두 번째 실험에서는 평균점에 대한 불일치의 합을 이용한 거리 측정에서 나타나는 문제점을 보완한 거리 측정 방법을 제시하였으며 이를 이용하여 가상 단어 군집화를 수행한 결과 군집화 정확도와 군집 순수도가 각각 약 96% 및 95%로 향상되었다.

  • PDF