DOI QR코드

DOI QR Code

Correlation analysis of antipsychotic dose and speech characteristics according to extrapyramidal symptoms

추체외로 증상에 따른 항정신병 약물 복용량과 음성 특성의 상관관계 분석

  • 이수빈 (서울대학교 융합과학기술대학원 음악오디오연구실) ;
  • 김서영 (분당서울대학교병원 정신건강의학과) ;
  • 김혜윤 (서울대학교 자연대학 뇌인지과학과) ;
  • 김의태 (분당서울대학교병원 정신건강의학과) ;
  • 유경상 (서울대학교 의과대학 임상약리학교실) ;
  • 이호영 (서울대학교 인문대학 언어학과) ;
  • 이교구 (서울대학교 융합과학기술대학원 음악오디오연구실)
  • Received : 2022.03.21
  • Accepted : 2022.05.24
  • Published : 2022.05.31

Abstract

In this paper, correlation analysis between speech characteristics and the dose of antipsychotic drugs was performed. To investigate the pattern of speech characteristics of ExtraPyramidal Symptoms (EPS) related to voice change, a common side effect of antipsychotic drugs, a Korean-based extrapyramidal symptom speech corpus was constructed through the sentence development. Through this, speech patterns of EPS and non-EPS groups were investigated, and in particular, a strong speech feature correlation was shown in the EPS group. In addition, it was confirmed that the type of speech sentence affects the speech feature pattern, and these results suggest the possibility of early detection of antipsychotics-induced EPS based on the speech features.

본 논문은 항정신병 약물의 복용량에 따른 음성 특징의 상관관계 분석을 수행하였다. 항정신병 약물의 대표적 부작용 중 하나인 추체외로 증상(ExtraPyramidal Symptoms, EPS) 발생에 따른 음성 특징의 패턴을 알아보기 위하여, 문장 개발을 통해 한국어 기반 추체외로 증상 음성 코퍼스를 구축하였다. 수집된 자료는 추체외로 증상 군과 비 추체외로 증상 군으로 나누어 음성 특징 패턴을 조사하였으며, 특히 추체외로 증상 군의 높은 음성 특징 상관관계를 보였다. 또한, 발화 문장의 종류가 음성 특징 패턴에 영향을 미친다는 것을 확인할 수 있었으며, 이를 통해 음성 특징을 기반한 추체외로 증상의 조기 발견 가능성을 기대해볼 수 있었다.

Keywords

Acknowledgement

본 논문은 서울대학교의 교내 융복합 연구과제인 "화자의 음성분석과 기계학습을 이용한 항정신성 약물의 효과성, 적정 복용량 및 부작용 예측 알고리즘 개발"의 연구 결과 중 일부이다.

References

  1. S. J. Cho, Korean Neuropsychiatric Association, Textbook of Neuropsychiatry (in Korean), 3rd ed (iMiS Company, Seoul, 2017), pp. 795-806.
  2. P. Sinha, V. P. Vandana, N. V Lewis, M. Jayaram, and P. Enderby, "Predictors of effect of atypical antipsychotics on speech," Indian J Psychol Med. 37, 429-433 (2015). https://doi.org/10.4103/0253-7176.168586
  3. L. Jeancolas, D. Petrovska-Delacretaz, G. Mangone, B.-E. Benkelfat, J.-C. Corvol, M. Vidailhet, S. Lehericy, and H. Benali, "X-vectors: New quantitative biomarkers for early Parkinson's disease detection from speech," Front. Neuroinform, 15, 4 (2021).
  4. B. K. Varghese, G. B. D. Amali, and U. KS. Devi, "Prediction of Parkinson's disease using machine learning techniques on speech dataset," Research J. Pharm. and Tech. 12, 644-648 (2019). https://doi.org/10.5958/0974-360x.2019.00114.8
  5. M. Wodzinski, A. Skalski, D. Hemmerling, J. R. Orozco-Arroyave, and E. Noth, "Deep learning approach to Parkinson's disease detection using voice recordings and convolutional neural network dedicated to image classification," Proc. IEEE EMBC, 717-720 (2019).
  6. G. M. Gharabawi, C. A. Bossie, R. A. Lasser, I. Turkoz, S. Rodriguez, and G. Chouinard, "Abnormal Involuntary Movement Scale (AIMS) and Extrapyramidal Symptom Rating Scale (ESRS): cross-scale comparison in assessing tardive dyskinesia," Schizophrenia Res. 77, 119-128 (2005). https://doi.org/10.1016/j.schres.2005.03.008
  7. S. Janno, M. M. Holi, K. Tuisku, and K. Wahlbeck, "Validity of Simpson-Angus Scale (SAS) in a naturalistic schizophrenia population," BMC Neurol. 5, 1-6 (2005). https://doi.org/10.1186/1471-2377-5-1
  8. S. Janno, M. M. Holi, K. Tuisku, and K. Wahlbeck, "Actometry and barnes akathisia rating scale in neuroleptic-induced akathisia," Eur Neuropsychopharmacol. 15, 39-41 (2005). https://doi.org/10.1016/j.euroneuro.2004.05.003
  9. Y.-H. Park and M. Chung, "Analysis of Korean spontaneous speech characteristics for spoken dialogue recognition" (in Korean), J. Acoust. Soc. Kr. 21, 330-338 (2002).
  10. S. Lee, S. W Suh, T. Kim ,K. Kim, K. H. Lee. J. R. Lee, G.. Han, J. W. Hong, J. W. Han, K. Lee, and K. W. Kim, "Screening major depressive disorder using vocal acoustic features in the elderly by sex," J. Affective Disorders, 291, 15-23 (2021). https://doi.org/10.1016/j.jad.2021.04.098
  11. B. Lubin, R. V. Whitlock, D. Reddy, and S. Petren, "A comparison of the short and long forms of the Multiple Affect Adjective Check List-Revised (MAACL-R)," J. Clinical Psychology, 57, 411-416 (2001). https://doi.org/10.1002/jclp.1023
  12. H.-h. Lee, E.-J. Kim, and M.-k. Lee, "A validation study of Korea positive and negative affect schedule: The PANAS scales" (in Korean), Kor J Clin Psychol. 22, 935-946 (2003).
  13. B. R, Kim, Compilation of the Korean affective word list, (Unpublished master's thesis, University of Yonsei, 2010).
  14. T. Inada and A. Inagaki, "Psychotropic dose equivalence in Japan," Psychiatry Clin Neurosci. 69, 440-447 (2015). https://doi.org/10.1111/pcn.12275
  15. S. Leucht, M. Samara, S. Heres, and J. M. Davis, "Dose equivalents for antipsychotic drugs: the DDD method," Schizophrenia Bulletin, 42(suppl.1), S90-S94 (2016). https://doi.org/10.1093/schbul/sbv167
  16. P. H. Rothe, S. Heres, and S. Leucht, "Dose equivalents for second generation long-acting injectable antipsychotics: The minimum effective dose method," Schizophr Res. 193, 23-28 (2018). https://doi.org/10.1016/j.schres.2017.07.033
  17. S. G. Koolagudi and K. S. Rao, "Emotion recognition from speech: a review," Int. J. Speech Technology, 15, 99-117 (2012). https://doi.org/10.1007/s10772-011-9125-1
  18. H. Meng, T. Yan, F. Yuan, and H. Wei, "Speech emotion recognition from 3D log-mel spectrograms with deep learning network," IEEE Access, 7, 125868-125881 (2019). https://doi.org/10.1109/access.2019.2938007
  19. L. He and C. Cao, "Automated depression analysis using convolutional neural networks from speech," J. Biomedical Informatics, 83, 103-111 (2018). https://doi.org/10.1016/j.jbi.2018.05.007
  20. H. A. Sanchez-Hevia, R. Gil-Pita, M. Utrilla-Manso, and M. Rosa-Zurera, "Convolutional-recurrent neural network for age and gender prediction from speech," Proc. IEEE SPSympo, 242-245 (2019).
  21. L. Raphael, J.Weston, A. Shivkumar, and E. Fristed, "Surfboard: Audio feature extraction for modern machine learning," arXiv preprint arXiv:2005.08848 (2020).
  22. F. Eyben, M. Wollmer, and B. Schuller, "Opensmile: the munich versatile and fast open-source audio feature extractor," Proc. the 18th ACM int. conf. on Multimedia, 1459-1462 (2010).
  23. P. Boersma and V. V. Heuven, "Speak and unSpeak with PRAAT," Glot International, 5, 341-347 (2001).