• Title/Summary/Keyword: 한국어 의존구문분석

Search Result 130, Processing Time 0.024 seconds

Korean Transition-based Dependency Parsing with Recurrent Neural Network (순환 신경망을 이용한 전이 기반 한국어 의존 구문 분석)

  • Li, Jianri;Lee, Jong-Hyeok
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.567-571
    • /
    • 2015
  • Transition-based dependency parsing requires much time and efforts to design and select features from a very large number of possible combinations. Recent studies have successfully applied Multi-Layer Perceptrons (MLP) to find solutions to this problem and to reduce the data sparseness. However, most of these methods have adopted greedy search and can only consider a limited amount of information from the context window. In this study, we use a Recurrent Neural Network to handle long dependencies between sub dependency trees of current state and current transition action. The results indicate that our method provided a higher accuracy (UAS) than an MLP based model.

The Lexical Sence Tagging for Word Sense Disambiguation (어휘의 중의성 해소를 위한 의미 태깅)

  • 추교남;우요섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.201-203
    • /
    • 1998
  • 한국어의 의미 분석을 위해서 의미소가 부여된 말뭉치(Sense-Tagged Corpus)의 구축은 필수적이다. 의미 태깅은 어휘의 다의적 특성으로 인해, 형태소나 구문 태깅에서와 같은 규칙 기반의 처리가 어려웠다. 기존의 연구에서 어휘의 의미는 형태소와 구문적 제약 등의 표층상에서 파악되어 왔으며, 이는 의미 데이터 기반으로 이루어진 것이 아니었기에, 실용적인 결과를 얻기가 힘들었다. 본 연구는 한국어의 구문과 의미적 특성을 고려하고, 용언과 모어 성분간의 의존 관계 및 의미 정보를 나타내는 하위범주화사전과 어휘의 계층적 의미 관계를 나타낸 의미사전(시소러스)을 이용하여, 반자동적인 방법으로 의미소가 부여된 말뭉치의 구축을 위한 기준과 알고리즘을 논하고자 한다.

  • PDF

A Study of Disfluency Processing for Dependency Parsing of Spoken (구어 의존 구문 분석을 위한 비유창성 처리 연구)

  • Park, Seokwon;Choe, Hyonsu;Han, Jiyoon;Oh, Taehwan;Ahn, Euijeong;Kim, Hansaem
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.144-148
    • /
    • 2019
  • 비유창성(disfluency)은 문어와 같이 정연한 구조로 말하지 못하는 현상 전반을 지칭한다. 이는 구어에서 보편적으로 발생하는 현상으로 구어 의존 구문 분석의 난이도를 상향시키는 요인이다. 본 연구에서는 비유창성 요소 유형을 담화 표지, 수정 표현, 반복 표현, 삽입 표현으로 분류하였다. 또한 유형별 비유창성 요소를 실제 말뭉치에서 어떻게 구문 주석할 것인지를 제안한다. 이와 같은 구어 데이터 처리 방식은 대화시스템 등 구어를 처리해야 하는 도메인에서의 자연언어이해 성능 향상에 기여할 것이다.

  • PDF

Korean Natural Language Processing Platform for Linked Data (Linked Data를 위한 한국어 자연언어처리 플랫폼)

  • Hahm, YoungGyun;Lim, Kyungtae;Rezk, Martin;Park, Jungyeul;Yoon, Yongun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.16-20
    • /
    • 2012
  • 본 논문에서는 한국어 자연언어처리를 위해 형태소분석기와 구구조 구문분석기와 의존구조 구문분석기를 통합한 하나의 플랫폼을 제공하고, 외국의 다양한 자연언어처리 도구들의 결과물과의 국제적 상호운용성 및 Linked Data를 위한 RDF 형태로의 변환 시스템을 제시한다.

  • PDF

Using Syntactic Unit of Morpheme for Reducing Morphological and Syntactic Ambiguity (형태소 및 구문 모호성 축소를 위한 구문단위 형태소의 이용)

  • Hwang, Yi-Gyu;Lee, Hyun-Young;Lee, Yong-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.784-793
    • /
    • 2000
  • The conventional morphological analysis of Korean language presents various morphological ambiguities because of its agglutinative nature. These ambiguities cause syntactic ambiguities and they make it difficult to select the correct parse tree. This problem is mainly related to the auxiliary predicate or bound noun in Korean. They have a strong relationship with the surrounding morphemes which are mostly functional morphemes that cannot stand alone. The combined morphemes have a syntactic or semantic role in the sentence. We extracted these morphemes from 0.2 million tagged words and classified these morphemes into three types. We call these morphemes a syntactic morpheme and regard them as an input unit of the syntactic analysis. This paper presents the syntactic morpheme is an efficient method for solving the following problems: 1) reduction of morphological ambiguities, 2) elimination of unnecessary partial parse trees during the parsing, and 3) reduction of syntactic ambiguity. Finally, the experimental results show that the syntactic morpheme is an essential unit for reducing morphological and syntactic ambiguity.

  • PDF

Cascaded Parsing Korean Sentences Using Grammatical Relations (문법관계 정보를 이용한 단계적 한국어 구문 분석)

  • Lee, Song-Wook
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.69-72
    • /
    • 2008
  • This study aims to identify dependency structures in Korean sentences with the cascaded chunking. In the first stage of the cascade, we find chunks of NP and guess grammatical relations (GRs) using Support Vector Machine (SVM) classifiers for all possible modifier-head pairs of chunks in terms of GR categories as subject, object, complement, adverbial, etc. In the next stages, we filter out incorrect modifier-head relations in each cascade for its corresponding GR using the SVM classifiers and the characteristics of the Korean language such as distance between relations, no-crossing and case property. Through an experiment with a parsed and GR tagged corpus for training the proposed parser, we achieved an overall accuracy of 85.7%.

Another Choice for Parsing : Using Syntactic Morpheme (파싱을 위한 선택 : 구문 형태소의 이용)

  • Hwang, Y.G.;Song, Y.J.;Lee, H.Y.;Lee, Y.S.
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.249-254
    • /
    • 1999
  • 자연어 분석에서 발생하는 가장 큰 문제점은 분석의 각 단계에서 필요 이상의 모호성이 발생하는 것이다. 이러한 모호성은 각각의 분석 단계에서는 반드시 필요한 결과일 수 있지만 다음 단계의 관점에서는 불필요하게 과생성된 자료로 볼 수 있다. 특히 한국어 형태소 분석 단계는 주어진 문장에 대해 최소의 의미를 가지는 형태소로 분석하기 때문에 과생성된 결과를 많이 만들어 내는데, 이들 대부분이 보조용언이나 의존 명사를 포함하는 형태소열에서 발생한다. 품사 태깅된 코퍼스에서 높은 빈도를 나타내는 형태소들을 분석해 보면 주위의 형태소와 강한 결합 관계를 가지는 것을 발견할 수 있다. 이러한 형태소는 대부분 자립성이 없는 기능형태소로서, 개개의 형태소가 가지는 의미의 합으로 표현되기보다는 문장내에서 하나의 구문 단위로 표현될 수 있다. 본 논문에서는 이 형태소 열을 구문 형태소로 정의하고, 필요한 경우 일반 형태소 해석의 결과를 구문 형태소 단위로 결합하고 이를 바탕으로 구문 해석을 하는 방법을 제안한다. 구문 형태소 단위를 이용하여 구문해석을 수행함으로써, 형태소 해석 결과의 축소를 통해 불필요한 구문 해석 곁과를 배제할 수 있다.

  • PDF

Altering LCA of dependency parse trees for improving relation extraction from adjective clauses (형용사구에서의 관계추출 개선을 위한 의존구문트리의 최소공동조상 (LCA) 변경)

  • Lee, Dae-Seok;Myaeng, Sung-Hyon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.552-556
    • /
    • 2018
  • 본 논문에서는 텍스트에서 개체(entity) 간 관계(relation) 추출 문제에서 의존구문트리를 이용하여 자질을 추출할 때 형용사구 내에 관계가 나타나는 경우의 성능을 향상시키는 방법을 제안한다. 일률적으로 의존구문트리의 최소공동조상(LCA: Least Common Ancestor)을 이용하는 일반적인 방법보다 형용사구가 나타날 때는 형용사구의 술어를 대신 이용하는 것이 더 좋은 자질이 된다는 것을 제안하고 로지스틱 회귀분석, SVM(linear), SVM(exponential kernel)을 이용한 실험들을 통해 그 효과를 확인하였다. 이는 트리커널을 이용한 것과 같이 의존구문트리의 최소공동조상이 주요한 역할을 하는 관계추출 모델들의 성능을 높일 수 있음을 보여 준다. 수행한 실험 과정을 통해 관계추출 데이터 셋에서 형용사구 내 관계를 포함하는 문장이 전체에서 차지하는 비율이 낮을 경우 생길 수 있는 문제를 추가적으로 얻을 수 있었다.

  • PDF

Exploiting Chunking for Dependency Parsing in Korean (한국어에서 의존 구문분석을 위한 구묶음의 활용)

  • Namgoong, Young;Kim, Jae-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.291-298
    • /
    • 2022
  • In this paper, we present a method for dependency parsing with chunking in Korean. Dependency parsing is a task of determining a governor of every word in a sentence. In general, we used to determine the syntactic governor in Korean and should transform the syntactic structure into semantic structure for further processing like semantic analysis in natural language processing. There is a notorious problem to determine whether syntactic or semantic governor. For example, the syntactic governor of the word "먹고 (eat)" in the sentence "밥을 먹고 싶다 (would like to eat)" is "싶다 (would like to)", which is an auxiliary verb and therefore can not be a semantic governor. In order to mitigate this somewhat, we propose a Korean dependency parsing after chunking, which is a process of segmenting a sentence into constituents. A constituent is a word or a group of words that function as a single unit within a dependency structure and is called a chunk in this paper. Compared to traditional dependency parsing, there are some advantage of the proposed method: (1) The number of input units in parsing can be reduced and then the parsing speed could be faster. (2) The effectiveness of parsing can be improved by considering the relation between two head words in chunks. Through experiments for Sejong dependency corpus, we have shown that the USA and LAS of the proposed method are 86.48% and 84.56%, respectively and the number of input units is reduced by about 22%p.

Korean Sematic Role Labeling Using CRFs (CRFs 기반의 한국어 의미역 결정)

  • Park, Tae-Ho;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.11-14
    • /
    • 2015
  • 의미역 결정은 서술어와 논항들 사이의 의미 관계를 결정하는 문제이다. 의미역 결정을 위해 구구조 정보와 의존 구조 정보 등의 다양한 자질에 대한 실험이 있었다. 논항은 구문 구조에서 얻을 수 있는 서술어와 논항 관계에 많은 영향을 받지만 구문 구조가 변경되어도 변하지 않는 논항의 의미로 인해 의미역 결정에 어려운 점이 있다. 본 논문에서는 한국어 의미역 결정 문제를 위해 Korean Propbank 말뭉치와 직접 구축한 의미역 말뭉치를 학습 말뭉치로 사용하였다. 본 논문에서는 이전에 연구된 구문 정보와 그 외의 자질들에 대한 성능을 검증하였다. 본 논문에서 제시하는 자질들의 성능을 검증하기 위해 CRF를 사용하였고, 제시된 새로운 자질을 사용하여 논항의 인식 및 분류에서 76.25%(F1)의 성능을 보였다.

  • PDF