• 제목/요약/키워드: 한국어 의미 분석

검색결과 484건 처리시간 0.032초

뉴럴 전이 기반 한국어 의존 파싱 & 의미역 결정 통합 모델 (Neural transition-based joint models for dependency Parsing and semantic role labeling of Korean)

  • 민진우;나승훈;신종훈;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.343-346
    • /
    • 2018
  • 기존의 의미역 결정은 먼저 구문 분석을 수행한 후에 해당 구문 분석 결과를 이용해 의미역 결정 테스크에 적용하는 파이프라인 방식으로 진행한다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 구문 파싱과 의미 파싱에 대해 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱과 의미역 파싱을 동시에 진행하도록 전이 액션을 확장한 의존 파싱 & 의미역 결정 통합 모델을 제안하고 실험 결과, Korean Prop Bank 의미역 결정 데이터 셋에서 파이프라인 방식 전이 기반 방식을 사용한 모델보다 논항 인식 및 분류(AIC) 성능에서 F1 기준 0.14% 높은 결과을 보인다.

  • PDF

한국어 구문 분석기를 이용한 예문기반 유사 영문 선택에 관한 연구 (A Study of the selection of similar English sentence based on example using the Korean parser)

  • 권영훈;윤영호;한광록
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.360-362
    • /
    • 2000
  • 본 연구는 예문을 이용하여 한국어 문장과 가장 유사한 영어 문장을 선택하기 위한 기존 연구보다 예문 지시의 정확도를 향상하고 기존의 문제점이었던 문장성분 선택의 불일치성을 제거하기 위해 한국어 구문 분석 시스템을 추가한 형태를 갖추고 있다. 한국어 구문 분석 시스템을 사용하는 이유는 한문장을 하나의 프레임으로 구조화시킬 때 서술부가 문장의 의미를 나타내는 가장 중요한 역할을 하므로 서술부를 헤더로 선택하고 단순히 조사 정보를 사용하여 각 문장성분을 추출하는 방법의 문제점을 제거하고 서술부 연결 관계를 기초로 프레임의 슬롯을 확보할 수 있기 때문이다. 유사 영문이 필요한 한국어 문장이 입력되면 입력 문장에 대한 형태소 분석과 한국어 구문 분석을 통하여 한국어 문장에서 서술부와 연결되는 주요 성분을 분리하여 프레임 구조를 생성하고 생성된 프레임과 이미 구축된 예문 데이터베이스 사이의 가중치와 유사도를 계산함으로써 한국어 문장과 유사한 영어 문장의 예를 제시하여 영작에 이용할 수 있는 시스템을 구현한다.

  • PDF

한국어 문장 임베딩의 언어적 속성 입증 평가 (A Probing Task on Linguistic Properties of Korean Sentence Embedding)

  • 안애림;고병일;이다니엘;한경은;신명철;남지순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.161-166
    • /
    • 2021
  • 본 연구는 한국어 문장 임베딩(embedding)에 담겨진 언어적 속성을 평가하기 위한 프로빙 태스크(Probing Task)를 소개한다. 프로빙 태스크는 임베딩으로부터 문장의 표층적, 통사적, 의미적 속성을 구분하는 문제로 영어, 폴란드어, 러시아어 문장에 적용된 프로빙 테스크를 소개하고, 이를 기반으로하여 한국어 문장의 속성을 잘 보여주는 한국어 문장 임베딩 프로빙 태스크를 설계하였다. 언어 공통적으로 적용 가능한 6개의 프로빙 태스크와 한국어 문장의 주요 특징인 주어 생략(SubjOmission), 부정법(Negation), 경어법(Honorifics)을 추가로 고안하여 총 9개의 프로빙 태스크를 구성하였다. 각 태스크를 위한 데이터셋은 '세종 구문분석 말뭉치'를 의존구문문법(Universal Dependency Grammar) 구조로 변환한 후 자동으로 구축하였다. HuggingFace에 공개된 4개의 다국어(multilingual) 문장 인코더와 4개의 한국어 문장 인코더로부터 획득한 임베딩의 언어적 속성을 프로빙 태스크를 통해 비교 분석한 결과, 다국어 문장 인코더인 mBART가 9개의 프로빙 태스크에서 전반적으로 높은 성능을 보였다. 또한 한국어 문장 임베딩에는 표층적, 통사적 속성보다는 심층적인 의미적 속성을 더욱 잘 담고 있음을 확인할 수 있었다.

  • PDF

한국어의 주격 중출 구문 (The Construction of Multiful Nominatives in Korean)

  • 이운영;이정민
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1995년도 제7회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.319-324
    • /
    • 1995
  • 한국어에는 주격 표지를 가진 명사가 두 번 이상 나타나는 구문이 자주 나타난다. 이러한 구문을 주격 중출 구문이라고 한다. 주격 중출 구문은 크게 부분-전체 구문, 양화사 유동 구문, 그리고 심리 술어 구문으로 나누어진다. 본고에서는 부분-전체 구문과 양화사 유동 구문은 함수-논항 관계를 이용하여 분석하고, 심리 술어 구문은 의미역할과 자리 이동으로 설명한다. 이러한 것은 의미적 측면과 통사적 측면을 함께 고려한 것으로 좀 더 일관성 있는 설명을 위한 접근이라 하겠다.

  • PDF

코퍼스로부터 형태소 분석을 위한 사전 구성 (A Dictionay Composition for Morphological Analyzer from Corpus)

  • 정민수;정규철;조원홍
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.316-320
    • /
    • 1998
  • 한국어나 일본어처럼 문법형태소의 기능에 의해 단어의 통사적, 의미적 역할이 결정되는 교착어에서는 형태소 분석이 통사 분석과 의미 분석에 미치는 영향이 크기 때문에 한국어의 분석에 있어서 형태소 분석은 아주 중요하다. 관형적 표현이 많은 한글은 문법 규칙만으론 분석하기가 쉽지 않고, 분기가 많이 생성되므로 오류가 발생할 확률도 높다. 이러한 문제점을 해결하기 위해 본 논문에선 사전을 중심으로 해결하고자 한다. 그러기 위해선 방대한 용량의 사전이 필요로 하게 되고 이를 구축하기 위한 시간과 노력이 요구되므로 이미 구성된 코퍼스를 이용해 사전을 구성하여 많은 시간과 노력을 줄일 수 있도록 한다. 그리고 생성되는 많은 분기 가운데 올바른 경로를 찾아 가기 위해 코퍼스내의 각 태그 결합정보를 추출하고 추출한 결합정보의 통계정보-코퍼스내에서 사용된 빈도수-포함하여 우선순위를 정하도록 한다.

  • PDF

한국어 질의응답 시스템을 위한 프레임 시멘틱스 기반 질의 의미 분석 (Semantic Parsing of Questions based on the Frame Semantics for Korean Question Answering System)

  • 함영균;남상하;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.122-127
    • /
    • 2016
  • 본 논문에서서는 질의응답 시스템을 위한 자연언어 질의 이해를 위하여 프레임 시멘틱스 기반 의미 분석 방식을 제안한다. 지식베이스에 의존적인 질의 이해는 지식베이스의 불완전성에 의해 충분한 정보를 분석하지 못한다는 점에 착안하여, 질의의 술부-논항구조 및 그 의미에 대한 분석을 수행하여 자연언어 질의에서 나타난 정보들을 충분히 파악하고자 하였다. 본 시스템은 자연언어 질의를 입력으로 받아 이를 프레임 시멘틱스의 구조에 기반하여 기계가 읽을 수 있는 임의의 RDF 표현방식의 모형 쿼리를 생성한다.

  • PDF

접사 구조 분석과 기계 학습에 기반한 한국어 의미 역 결정 (Korean Semantic Role Labeling Based on Suffix Structure Analysis and Machine Learning)

  • 석미란;김유섭
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.555-562
    • /
    • 2016
  • 의미 역 결정은 한 문장에서 술어와 그것의 논항간의 의미 관계를 결정해주는 것을 말한다. 한편 한국어 의미 역 결정은 영어와는 다른 한국어 고유의 특이한 언어 구조 때문에 많은 어려움을 가지고 있는데, 이러한 어려움 때문에 지금까지 제안된 다양한 방법들을 곧바로 적용하기에 어려움이 있었다. 다시 말하자면, 지금까지 제안된 방법들은 영어나 중국어에 적용했을 때에 비해서 한국어에 적용하면 낮은 성능을 보여주었던 것이다. 이러한 어려움을 해결하기 위하여 본 연구에서는 조사나 어미와 같은 접사구조를 분석하는 것에 초점을 맞추었다. 한국어는 일본어와 같은 교착어의 하나인데, 이들 교착어에서는 매우 잘 정리되어 있는 접사구조가 어휘에 반영되어 있다. 교착어는 바로 이들 잘 정의된 접사 구조 때문에 매우 자유로운 어순이 가능하다. 또한 본 연구에서는 단일 형태소로 이루어진 논항은 기초 통계량을 기준으로 의미 역 결정을 하였다. 또한 지지 벡터 기계(Support Vector Machine: SVM)과 조건부 무작위장(Conditional Random Fields: CRFs)와 갗은 기계 학습 알고리즘을 사용하여 앞에서 결정되지 못한 논항들의 의미 역을 결정하였다. 본 논문에서 제시된 방법은 기계 학습 접근 방식이 처리해야 하는 논항의 범위를 줄여주는 역할을 하는데, 이는 기계 학습 접근은 상대적으로 불확실하고 부정확한 의미 역 결정을 하기 때문이다. 실험에서는 본 연구는 15,224 논항을 사용하였는데, 약 83.24%의 f1 점수를 얻을 수 있었는데, 이는 한국어 의미 역 결정 연구에 있어서 해외에서 발표된 연구 중 가장 높은 성능으로 알려진 것에 비해 약 4.85%의 향상을 보여준 것이다.

한국어에 적합한 단어 임베딩 모델 및 파라미터 튜닝에 관한 연구 (On Word Embedding Models and Parameters Optimized for Korean)

  • 최상혁;설진석;이상구
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.252-256
    • /
    • 2016
  • 본 논문에서는 한국어에 최적화된 단어 임베딩을 학습하기 위한 방법을 소개한다. 단어 임베딩이란 각 단어가 분산된 의미를 지니도록 고정된 차원의 벡터공간에 대응 시키는 방법으로, 기계번역, 개체명 인식 등 많은 자연어처리 분야에서 활용되고 있다. 본 논문에서는 한국어에 대해 최적의 성능을 낼 수 있는 학습용 말뭉치와 임베딩 모델 및 적합한 하이퍼 파라미터를 실험적으로 찾고 그 결과를 분석한다.

  • PDF

한국어와 중국어 이중언어 화자의 대뇌 언어 영역 활성화 양상

  • 이홍재;이동훈;유재욱;문찬홍;나동규;남기춘
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2001년도 제6차 학술대회 초록집
    • /
    • pp.102-102
    • /
    • 2001
  • 목적: 이중언어자에 있어서 각각의 언어가 대뇌에 어떻게 표상 되어 있는가에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 한국어/중국어 이중언어화자를 대상으로 사용한 언어와 과제에 따라 활성화된 부위에 차이가 있는지 알아보고자 하였다. 대상 및 방법: 이중언어자(화교) 자원자 8명을 대상으로 하였고, 모두 오른손잡이였다. 한국어와 중국어로 구성된 어휘판단과제(lexical decision task)와 의미판단과제 (semantic decision task)를 이용하여 언어 영역의 활성화를 유도하였다. 어휘판단과제는 화면에 제시되는 두 자극이 모두 단어인지 아닌지 판단하여 신호하도록 하였고(예:원개 · 교화, 토끼, 지욱), 의미판단과제는 화면에 제시되는 두 자극의 의미가 관련 있는지 없는지 판단하여 신호하도록 하였다. (예:가가 ·제제, 아침·저녁). 대조과제는 아랍어(예:equation omitted) 글자의 크기를 판단하여 신호하도록 하였다. 1.5T 초전도 자기공명영상장치에서 EPI BOLD 기법을 이용하여 기능적 영상을 얻었으며 8명에서 얻은 영상을 정상화(normalize)한 후 SPM 프로그램을 이용하여 통계분석을 하였다. p<0.000001을 기준으로 얻어진 활성화 영상에서 각 언어와 과제별로 나타난 활성화 신호의 차이를 육안적으로 분석하였다.

  • PDF

"의미적 한 단어" 유형 분석 및 형태소 분석 기법 (Korean Morphological Analysis Considering a Term with Multiple Parts of Speech)

  • 허윤영;권혁철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1994년도 제6회 한글 및 한국어정보처리 학술대회
    • /
    • pp.128-131
    • /
    • 1994
  • 한국어 문서중 신문이나 시사지, 법률관련문서, 경제학관련문서, 국문학관련문서와 같은 전문분야 문서에는 한글, 한자, 영어, 문장부호와 같은 기호들의 결합으로 이루어지면서 하나의 뜻으로 나타내는 "의미적 한 단어"가 많이 존재한다. 이러한 단어들은 이를 고려하지 못한 형태소 분석기의 분석률을 감소시키고, 오분석율을 증가시킨다. 본 논문은 "의미적 한 단어"의 유형과 분석과정에 따른 유형을 분류하였으며 그에 적합한 형태소 분석기법을 제시하였다. 유형 분류과 제사된 형태소 분석기법으로 구현된 형태소 분석기는 기존의 형태소 분석기보다 분석률이 증가되었으며 오분석률은 감소되었다.

  • PDF