Kim, Young-Kil;Seo, Young-Ae;Seo, Kwang-Jun;Choi, Sung-Kwon
Proceedings of the Korea Information Processing Society Conference
/
2000.10a
/
pp.261-264
/
2000
지금까지의 한영 번역 방식은 규칙 기반 방식이 주를 이루었지만 현재 패턴을 이용한 번역 방식이 활발히 연구되고 있다. 그러나 패턴 기반 방식은 그 적용성(Coverage)에 대한 치명적인 단점을 지닌다. 따라서 본 논문에서는 한국어 패턴을 어절 단위의 일반 문틀과 동사구를 중심으로 하는 용언중심의 문틀로 나누어 각 패턴들에 대한 적용성 및 실현성을 조사한다. 실험은 기존의 형태소 분석기를 이용하여 방송 자막 문장 351,806 문장을 대상으로 자동으로 문틀을 구축하여 4,995 문장의 테스트 데이터에 대한 적용성 검사를 실시하였다. 즉 본 논문에서는 방송 자막 문장을 대상으로 한영번역을 위한 일반 문틀 및 용언 중심의 문틀 방식의 적용성을 조사하여 문틀 기반 방식의 실현성을 평가하고 앞으로의 한영 번역 시스템 개발 방향을 제시한다.
Kim, Jun-Su;Kim, Chang-Hwan;Lee, Wang-Woo;Lee, Soo-Dong;Ock, Cheol-Young
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.487-493
/
2001
본 논문에서는 Bayes 정리를 적용한 통계기반 동형이의어 분별 시스템에 대한 외부실험 결과를 분석하여, 정확률 향상을 위한 의미범주 가중치 및 인접 어절에 대한 거리 가중치 모델을 제시한다. 의미 분별된 사전 뜻풀이말 코퍼스(120만 어절)에서 구축된 의미정보를 이용한 통계기반 동형이의어 분별 시스템을 사전 뜻풀이말 문장에 출현하는 동형이의어 의미 분별에 적용한 결과 상위 고빈도 200개의 동형이의어에 대해 평균 98.32% 정확률을 보였다. 내부 실험에 사용된 200개의 동형이의어 중 49개(체언 31개, 용언 18개)를 선별하여 이들 동형이의어를 포함하고 있는 50,703개의 문장을 세종계획 품사 부착 코퍼스(350만 어절)에서 추출하여 외부 실험을 하였다. 분별하고자 하는 동형이의어의 앞/뒤 5어절에 대해 의미범주 및 거리 가중치를 부여한 실험 결과 기존 통계기반 분별 모델 보다 2.93% 정확률이 향상되었다.
Computers require analytic and processing capability for all possibilities of human expression in order to process sentences like human beings. Linguistic information processing thus forms the initial basis. When analyzing a sentence syntactically, it is necessary to divide the sentence into components, find obligatory arguments focusing on predicates, identify the sentence core, and understand semantic relations between the arguments and predicates. In this study, the method applied a case frame dictionary based on The Korean Standard Dictionary of The National Institute of the Korean Language; in addition, we used a CRF Model that constructed subcategorization of predicates as featured in Korean Lexical Semantic Network (UWordMap) for semantic role labeling. Automatically tagged semantic roles based on the CRF model, which established the information of words, predicates, the case-frame dictionary and hypernyms of words as features, were used. This method demonstrated higher performance in comparison with the existing method, with accuracy rate of 83.13% as compared to 81.2%, respectively.
의미 체계는 한국어 기초어휘에 대한 개념지식을 구축하는데 기본이 될 뿐만 아니라, 문장 분석시의 구조적 모호성과 단어 의미 모호성을 해소하는 중요한 단서를 제공할수 있다. 이러한 의미 체계가 실용적으로 여러 응용 시스템에서 사용되기 위해서는 광범위하고 타당한 자료를 바탕으로 하여 객관적인 방법으로 설정되어야한다. 국어 사전의 뜻풀이말에서의 상위개념을 표제어의 상위어로 선정하는 bottom-up 방식으로 구축하였던 한국어 명사의미체계는 사전편찬시의 비일관적인 뜻풀이말의 기술에 따른 여러 문제점이 있었다. 본 연구에서는 이러한 문제점들을 해결하기 위해서 사전 뜻풀이말에서 상위개념을 수식하는 어절과 용언의 의미호응관계에서 상위개념의 의미속성을 추출하고, 이들 의미 속성에 의한 명사의미체계를 구축하고 이를 바탕으로 명사의미 TAG를 설정할수 있다.
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.88-93
/
1997
본 논문에서는 품사 태깅을 위해 여러 통계 모델을 실험을 통하여 비교하였으며 이를 토대로 통계적 모델을 구성하였다. 형태소 패턴 사전을 이용하여 미등록어의 위치와 개수에 관계없는 일반적인 방법의 미등록어 처리 방법을 개발하고 통계모델이 가지는 단점을 보완할 수 있는 오류 수정 규칙을 함께 이용하여 혼합형 품사 태깅 시스템인 $POSTAG^{i}$를 개발하였다. 미등록어를 추정하는 형태소 패턴 사전은 한국어 음절 정보와 용언의 불규칙 정보를 이용하여 구성하고 다어절어 사전을 이용하여 여러 어절에 걸쳐 나타나는 연어를 효과적으로 처리하면서 전체적인 태깅 정확도를 개선할 수 있다. 또 오류 수정 규칙은 Brill이 제안한 학습을 통하여 자동으로 얻어진다. 오류 수정 규칙의 자동 추출시에 몇 가지의 휴리스틱을 사용하여 보다 우수하고 일반적인 규clr을 추출할 수 있게 하였다. 10만의 형태소 품사 말뭉치로 학습하고 학습에 참여하지 않은 2만 5천여 형태소로 실험하여 97.28%의 정확도를 보였다.
Annual Conference on Human and Language Technology
/
2008.10a
/
pp.35-41
/
2008
이 논문은 각 문법 관계(grammatical relation)에서 선호되는 체언 어휘를 파악하고, 이 어휘들의 의미적 유형 및 그 위계를 파악하는 것이 목적이다. 이를 위해 80만 어절의 21세기 세종계획 구문분석 말뭉치에서 그 분포를 추출하고, 통계적 검증을 통해 각 문법 관계에서 선호되는 체언 어휘를 선별한다. 이 연구에서 관찰하는 문법 관계는 주어, 목적어, 용언수식어로 하며, 이들 문법 관계에서 선호되는 어휘 추출 대상 품사는 대명사, 고유명사, 일반명사로 한다. 한정성의 강도에 따라 주어 분포 경향이 나타나며, 이에 따라 대명사 > 고유명사 > 일반명사 순으로 주어 분포 경향이 나타난다. 그러나 일반적 예측과 다르게 한정성의 강도가 더 강한 것으로 알려진 대명사가 고유명사보다 목적어와 용언수식어에서 분포 경향이 더 강하여, 일반명사 > 대명사 > 고유명사의 순으로 분포 경향이 나타난다. 대명사, 고유명사, 일반명사는 공통적으로 주어에서는 사람 지시어, 목적어에서는 사물과 장소 지시어, 그리고 용언수식어에서는 시공간 표현이 선호되어 분포한다. 특히 대명사는 각 문법기능에서 인칭대명사의 경우 인칭에 따라, 그리고 지시대명사의 경우 원근칭에 따라 선호도의 차이를 보인다. 이러한 체언 어휘의 의미적 분포 특성은 문법 관계에 통사적 기능 외에도 의미적 경향이 반영된 것으로 고려될 수 있다.
Many sentiment categorization systems based on machine learning methods use morphological analyzers in order to extract linguistic features from sentences. However, the morphological analyzers do not generally perform well in a customer review domain because online customer reviews include many spacing errors and spelling errors. These low performances of the underlying systems lead to performance decreases of the sentiment categorization systems. To resolve this problem, we propose a feature extraction method based on simple longest matching of Eojeol (a Korean spacing unit) and phoneme patterns. The two kinds of patterns are automatically constructed from a large amount of POS (part-of-speech) tagged corpus. Eojeol patterns consist of Eojeols including content words such as nouns and verbs. Phoneme patterns consist of leading consonant and vowel pairs of predicate words such as verbs and adjectives because spelling errors seldom occur in leading consonants and vowels. To evaluate the proposed method, we implemented a sentiment categorization system using a SVM (Support Vector Machine) as a machine learner. In the experiment with Korean customer reviews, the sentiment categorization system using the proposed method outperformed that using a morphological analyzer as a feature extractor.
Annual Conference on Human and Language Technology
/
1993.10a
/
pp.355-368
/
1993
형태소 처리의 기본 원칙은 사전의 표제어를 형태소 수준으로 함으로써 사전의 크기를 줄이고, 중복되는 정보의 양을 최소화하는 것이다. 본 논문에서는 형태소 처리를 위한 여러 환경 요소들 중에서 특별히 확장된 사전 표제어를 기본으로 하는 환경을 제안한다. 확장 사전 환경은 어휘에 대한 사전 표제어와 사전 정보의 분리를 기본으로 한다. 기본 사전 표제어에 대하여 어휘의 활용형을 사전 작성의 후처리인 사전 표제어에 대한 색인구조 구성시에 자동으로 확장함으로써 용언의 불규칙 활용과 음운 축약 현상에 대처한다. 확장 사전 환경의 장점은 형태소 해석과 생성시에 필요한 불규칙 활용에 대한 처리를 사전 확장 시간으로 앞당기고, 어절의 부분문자열과 사전 표제어간의 직접 대응성을 제공하여 여러 응용에 쉽게 적용이 가능하다는 것이다.
Annual Conference on Human and Language Technology
/
1998.10c
/
pp.412-418
/
1998
의미 TAG는 한국어 기초어휘에 대한 개념지식을 구축하는 데 기본이 될 뿐만 아니라, 문장 분석시의 구조적 모호성과 단어 의미 모호성을 해소하는 중요한 단서를 제공할 수 있다. 이러한 의미 TAG가 실용적으로 여러 응용 시스템에서 사용되기 위해서는 광범위하고 타당한 자료를 바탕으로 하여 객관적인 방법으로 설정 되어야 한다. 국어사전의 뜻풀이말에서의 상위개념을 표제어의 상위어로 선정하는 bottom-up 방식으로 구축하였던 한국어 명사의미체계는 근본적으로 사전편찬자의 비일관적인 뜻풀이말의 기술에 따른 여러 문제점이 있었다. 본 연구에서는 이러한 문제점들을 해결하기 위해서 사전 뜻풀이말에서 상위개념을 수식하는 어절과 용언의 의미호응관계에서 상위개념의 의미속성을 추출하고, 이들 의미속성에 의한 명사 의미체계를 구축하여 이를 바탕으로 명사의미 TAG를 설정할 수 있도록 하였다.
KIPS Transactions on Software and Data Engineering
/
v.3
no.6
/
pp.219-230
/
2014
An analysis of dependency relation is a job that determines the governor and the dependent between words in sentence. The dependency relation of predicate is established by patterns and selectional restriction of subcategorization of the predicate. This paper proposes a method of analysis of Korean dependency relation using homograph predicate disambiguated in morphology analysis phase. The disambiguated homograph predicates has each different pattern. Especially reusing a stage transition training dictionary used during tagging POS and homograph, we propose a method of fixing the dependency relation of {noun+postposition, predicate}, and we analyze the accuracy and an effect of homograph for analysis of dependency relation. We used the Sejong Phrase Structured Corpus for experiment. We transformed the phrase structured corpus to dependency relation structure and tagged homograph. From the experiment, the accuracy of dependency relation by disambiguating homograph is 80.38%, the accuracy is increased by 0.42% compared with one of undisambiguated homograph. The Z-values in statistical hypothesis testing with significance level 1% is ${\mid}Z{\mid}=4.63{\geq}z_{0.01}=2.33$. So we can conclude that the homograph affects on analysis of dependency relation, and the stage transition training dictionary used in tagging POS and homograph affects 7.14% on the accuracy of dependency relation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.