• Title/Summary/Keyword: 한국어 용언 어절

Search Result 37, Processing Time 0.02 seconds

An Analysis of Feasibility of Sentence Frame Based Method for Korean to English Translation System (한영 번역 시스템을 위한 문틀 기반 번역 방식의 실현성 분석)

  • Kim, Young-Kil;Seo, Young-Ae;Seo, Kwang-Jun;Choi, Sung-Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.261-264
    • /
    • 2000
  • 지금까지의 한영 번역 방식은 규칙 기반 방식이 주를 이루었지만 현재 패턴을 이용한 번역 방식이 활발히 연구되고 있다. 그러나 패턴 기반 방식은 그 적용성(Coverage)에 대한 치명적인 단점을 지닌다. 따라서 본 논문에서는 한국어 패턴을 어절 단위의 일반 문틀과 동사구를 중심으로 하는 용언중심의 문틀로 나누어 각 패턴들에 대한 적용성 및 실현성을 조사한다. 실험은 기존의 형태소 분석기를 이용하여 방송 자막 문장 351,806 문장을 대상으로 자동으로 문틀을 구축하여 4,995 문장의 테스트 데이터에 대한 적용성 검사를 실시하였다. 즉 본 논문에서는 방송 자막 문장을 대상으로 한영번역을 위한 일반 문틀 및 용언 중심의 문틀 방식의 적용성을 조사하여 문틀 기반 방식의 실현성을 평가하고 앞으로의 한영 번역 시스템 개발 방향을 제시한다.

  • PDF

A Homonym Disambiguation System Based on Statistical Model Using Sense Category and Distance Weights (의미범주 및 거리 가중치를 고려한 통계기반 동형이의어 분별 시스템)

  • Kim, Jun-Su;Kim, Chang-Hwan;Lee, Wang-Woo;Lee, Soo-Dong;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.487-493
    • /
    • 2001
  • 본 논문에서는 Bayes 정리를 적용한 통계기반 동형이의어 분별 시스템에 대한 외부실험 결과를 분석하여, 정확률 향상을 위한 의미범주 가중치 및 인접 어절에 대한 거리 가중치 모델을 제시한다. 의미 분별된 사전 뜻풀이말 코퍼스(120만 어절)에서 구축된 의미정보를 이용한 통계기반 동형이의어 분별 시스템을 사전 뜻풀이말 문장에 출현하는 동형이의어 의미 분별에 적용한 결과 상위 고빈도 200개의 동형이의어에 대해 평균 98.32% 정확률을 보였다. 내부 실험에 사용된 200개의 동형이의어 중 49개(체언 31개, 용언 18개)를 선별하여 이들 동형이의어를 포함하고 있는 50,703개의 문장을 세종계획 품사 부착 코퍼스(350만 어절)에서 추출하여 외부 실험을 하였다. 분별하고자 하는 동형이의어의 앞/뒤 5어절에 대해 의미범주 및 거리 가중치를 부여한 실험 결과 기존 통계기반 분별 모델 보다 2.93% 정확률이 향상되었다.

  • PDF

Korean Semantic Role Labeling Using Case Frame Dictionary and Subcategorization (격틀 사전과 하위 범주 정보를 이용한 한국어 의미역 결정)

  • Kim, Wan-Su;Ock, Cheol-Young
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1376-1384
    • /
    • 2016
  • Computers require analytic and processing capability for all possibilities of human expression in order to process sentences like human beings. Linguistic information processing thus forms the initial basis. When analyzing a sentence syntactically, it is necessary to divide the sentence into components, find obligatory arguments focusing on predicates, identify the sentence core, and understand semantic relations between the arguments and predicates. In this study, the method applied a case frame dictionary based on The Korean Standard Dictionary of The National Institute of the Korean Language; in addition, we used a CRF Model that constructed subcategorization of predicates as featured in Korean Lexical Semantic Network (UWordMap) for semantic role labeling. Automatically tagged semantic roles based on the CRF model, which established the information of words, predicates, the case-frame dictionary and hypernyms of words as features, were used. This method demonstrated higher performance in comparison with the existing method, with accuracy rate of 83.13% as compared to 81.2%, respectively.

A Korean Noun Sematic Hierarchy based on Semantic Features (의미속성에 기반한 한국어 명사 의미 체계)

  • Jo, Pyeong-Ok;Ok, Cheol-Yeong
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.4
    • /
    • pp.584-594
    • /
    • 1999
  • 의미 체계는 한국어 기초어휘에 대한 개념지식을 구축하는데 기본이 될 뿐만 아니라, 문장 분석시의 구조적 모호성과 단어 의미 모호성을 해소하는 중요한 단서를 제공할수 있다. 이러한 의미 체계가 실용적으로 여러 응용 시스템에서 사용되기 위해서는 광범위하고 타당한 자료를 바탕으로 하여 객관적인 방법으로 설정되어야한다. 국어 사전의 뜻풀이말에서의 상위개념을 표제어의 상위어로 선정하는 bottom-up 방식으로 구축하였던 한국어 명사의미체계는 사전편찬시의 비일관적인 뜻풀이말의 기술에 따른 여러 문제점이 있었다. 본 연구에서는 이러한 문제점들을 해결하기 위해서 사전 뜻풀이말에서 상위개념을 수식하는 어절과 용언의 의미호응관계에서 상위개념의 의미속성을 추출하고, 이들 의미 속성에 의한 명사의미체계를 구축하고 이를 바탕으로 명사의미 TAG를 설정할수 있다.

Hybrid POS Tagging with generalized unknown word handling and post error-correction rules (일반화된 미등록어 처리와 오류 수정규칙을 이용한 혼합형 품사태깅)

  • Cha, Jeong-Won;Lee, Won-Il;Lee, Geun-Bae;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.88-93
    • /
    • 1997
  • 본 논문에서는 품사 태깅을 위해 여러 통계 모델을 실험을 통하여 비교하였으며 이를 토대로 통계적 모델을 구성하였다. 형태소 패턴 사전을 이용하여 미등록어의 위치와 개수에 관계없는 일반적인 방법의 미등록어 처리 방법을 개발하고 통계모델이 가지는 단점을 보완할 수 있는 오류 수정 규칙을 함께 이용하여 혼합형 품사 태깅 시스템인 $POSTAG^{i}$를 개발하였다. 미등록어를 추정하는 형태소 패턴 사전은 한국어 음절 정보와 용언의 불규칙 정보를 이용하여 구성하고 다어절어 사전을 이용하여 여러 어절에 걸쳐 나타나는 연어를 효과적으로 처리하면서 전체적인 태깅 정확도를 개선할 수 있다. 또 오류 수정 규칙은 Brill이 제안한 학습을 통하여 자동으로 얻어진다. 오류 수정 규칙의 자동 추출시에 몇 가지의 휴리스틱을 사용하여 보다 우수하고 일반적인 규clr을 추출할 수 있게 하였다. 10만의 형태소 품사 말뭉치로 학습하고 학습에 참여하지 않은 2만 5천여 형태소로 실험하여 97.28%의 정확도를 보였다.

  • PDF

A Treebank-Based Approach to Preferred Nominal Words in Grammatical Relations and their Semantic Types (구문분석 말뭉치를 이용한 문법 관계의 선호 체언 어휘와 의미 유형 연구)

  • Hong, Jungha
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.35-41
    • /
    • 2008
  • 이 논문은 각 문법 관계(grammatical relation)에서 선호되는 체언 어휘를 파악하고, 이 어휘들의 의미적 유형 및 그 위계를 파악하는 것이 목적이다. 이를 위해 80만 어절의 21세기 세종계획 구문분석 말뭉치에서 그 분포를 추출하고, 통계적 검증을 통해 각 문법 관계에서 선호되는 체언 어휘를 선별한다. 이 연구에서 관찰하는 문법 관계는 주어, 목적어, 용언수식어로 하며, 이들 문법 관계에서 선호되는 어휘 추출 대상 품사는 대명사, 고유명사, 일반명사로 한다. 한정성의 강도에 따라 주어 분포 경향이 나타나며, 이에 따라 대명사 > 고유명사 > 일반명사 순으로 주어 분포 경향이 나타난다. 그러나 일반적 예측과 다르게 한정성의 강도가 더 강한 것으로 알려진 대명사가 고유명사보다 목적어와 용언수식어에서 분포 경향이 더 강하여, 일반명사 > 대명사 > 고유명사의 순으로 분포 경향이 나타난다. 대명사, 고유명사, 일반명사는 공통적으로 주어에서는 사람 지시어, 목적어에서는 사물과 장소 지시어, 그리고 용언수식어에서는 시공간 표현이 선호되어 분포한다. 특히 대명사는 각 문법기능에서 인칭대명사의 경우 인칭에 따라, 그리고 지시대명사의 경우 원근칭에 따라 선호도의 차이를 보인다. 이러한 체언 어휘의 의미적 분포 특성은 문법 관계에 통사적 기능 외에도 의미적 경향이 반영된 것으로 고려될 수 있다.

  • PDF

A Robust Pattern-based Feature Extraction Method for Sentiment Categorization of Korean Customer Reviews (강건한 한국어 상품평의 감정 분류를 위한 패턴 기반 자질 추출 방법)

  • Shin, Jun-Soo;Kim, Hark-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.12
    • /
    • pp.946-950
    • /
    • 2010
  • Many sentiment categorization systems based on machine learning methods use morphological analyzers in order to extract linguistic features from sentences. However, the morphological analyzers do not generally perform well in a customer review domain because online customer reviews include many spacing errors and spelling errors. These low performances of the underlying systems lead to performance decreases of the sentiment categorization systems. To resolve this problem, we propose a feature extraction method based on simple longest matching of Eojeol (a Korean spacing unit) and phoneme patterns. The two kinds of patterns are automatically constructed from a large amount of POS (part-of-speech) tagged corpus. Eojeol patterns consist of Eojeols including content words such as nouns and verbs. Phoneme patterns consist of leading consonant and vowel pairs of predicate words such as verbs and adjectives because spelling errors seldom occur in leading consonants and vowels. To evaluate the proposed method, we implemented a sentiment categorization system using a SVM (Support Vector Machine) as a machine learner. In the experiment with Korean customer reviews, the sentiment categorization system using the proposed method outperformed that using a morphological analyzer as a feature extractor.

Morphological Processing in an Expanded Dictionary Environment (확장 사전 환경에서의 한국어 형태소 해석과 생성)

  • Cho, Young-Hwan;Cha, Hee-Joon;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.355-368
    • /
    • 1993
  • 형태소 처리의 기본 원칙은 사전의 표제어를 형태소 수준으로 함으로써 사전의 크기를 줄이고, 중복되는 정보의 양을 최소화하는 것이다. 본 논문에서는 형태소 처리를 위한 여러 환경 요소들 중에서 특별히 확장된 사전 표제어를 기본으로 하는 환경을 제안한다. 확장 사전 환경은 어휘에 대한 사전 표제어와 사전 정보의 분리를 기본으로 한다. 기본 사전 표제어에 대하여 어휘의 활용형을 사전 작성의 후처리인 사전 표제어에 대한 색인구조 구성시에 자동으로 확장함으로써 용언의 불규칙 활용과 음운 축약 현상에 대처한다. 확장 사전 환경의 장점은 형태소 해석과 생성시에 필요한 불규칙 활용에 대한 처리를 사전 확장 시간으로 앞당기고, 어절의 부분문자열과 사전 표제어간의 직접 대응성을 제공하여 여러 응용에 쉽게 적용이 가능하다는 것이다.

  • PDF

A Study on A Korean Noun Semantic TAG based on Semantic Features (의미속성에 기반한 한국어 명사 의미 TAG에 관한 연구)

  • Lee, S.;Cho, P.;Ahn, M.;Ock, C.;Park, J.;Park, D.
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.412-418
    • /
    • 1998
  • 의미 TAG는 한국어 기초어휘에 대한 개념지식을 구축하는 데 기본이 될 뿐만 아니라, 문장 분석시의 구조적 모호성과 단어 의미 모호성을 해소하는 중요한 단서를 제공할 수 있다. 이러한 의미 TAG가 실용적으로 여러 응용 시스템에서 사용되기 위해서는 광범위하고 타당한 자료를 바탕으로 하여 객관적인 방법으로 설정 되어야 한다. 국어사전의 뜻풀이말에서의 상위개념을 표제어의 상위어로 선정하는 bottom-up 방식으로 구축하였던 한국어 명사의미체계는 근본적으로 사전편찬자의 비일관적인 뜻풀이말의 기술에 따른 여러 문제점이 있었다. 본 연구에서는 이러한 문제점들을 해결하기 위해서 사전 뜻풀이말에서 상위개념을 수식하는 어절과 용언의 의미호응관계에서 상위개념의 의미속성을 추출하고, 이들 의미속성에 의한 명사 의미체계를 구축하여 이를 바탕으로 명사의미 TAG를 설정할 수 있도록 하였다.

  • PDF

An Analysis of Korean Dependency Relation by Homograph Disambiguation (동형이의어 분별에 의한 한국어 의존관계 분석)

  • Kim, Hong-Soon;Ock, Cheol-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.6
    • /
    • pp.219-230
    • /
    • 2014
  • An analysis of dependency relation is a job that determines the governor and the dependent between words in sentence. The dependency relation of predicate is established by patterns and selectional restriction of subcategorization of the predicate. This paper proposes a method of analysis of Korean dependency relation using homograph predicate disambiguated in morphology analysis phase. The disambiguated homograph predicates has each different pattern. Especially reusing a stage transition training dictionary used during tagging POS and homograph, we propose a method of fixing the dependency relation of {noun+postposition, predicate}, and we analyze the accuracy and an effect of homograph for analysis of dependency relation. We used the Sejong Phrase Structured Corpus for experiment. We transformed the phrase structured corpus to dependency relation structure and tagged homograph. From the experiment, the accuracy of dependency relation by disambiguating homograph is 80.38%, the accuracy is increased by 0.42% compared with one of undisambiguated homograph. The Z-values in statistical hypothesis testing with significance level 1% is ${\mid}Z{\mid}=4.63{\geq}z_{0.01}=2.33$. So we can conclude that the homograph affects on analysis of dependency relation, and the stage transition training dictionary used in tagging POS and homograph affects 7.14% on the accuracy of dependency relation.