• Title/Summary/Keyword: 한국어 어절

Search Result 364, Processing Time 0.018 seconds

Two-Path Language Modeling Considering Word Order Structure of Korean (한국어의 어순 구조를 고려한 Two-Path 언어모델링)

  • Shin, Joong-Hwi;Park, Jae-Hyun;Lee, Jung-Tae;Rim, Hae-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.8
    • /
    • pp.435-442
    • /
    • 2008
  • The n-gram model is appropriate for languages, such as English, in which the word-order is grammatically rigid. However, it is not suitable for Korean in which the word-order is relatively free. Previous work proposed a twoply HMM that reflected the characteristics of Korean but failed to reflect word-order structures among words. In this paper, we define a new segment unit which combines two words in order to reflect the characteristic of word-order among adjacent words that appear in verbal morphemes. Moreover, we propose a two-path language model that estimates probabilities depending on the context based on the proposed segment unit. Experimental results show that the proposed two-path language model yields 25.68% perplexity improvement compared to the previous Korean language models and reduces 94.03% perplexity for the prediction of verbal morphemes where words are combined.

Lexico-semantic interactions during the visual and spoken recognition of homonymous Korean Eojeols (한국어 시·청각 동음동철이의 어절 재인에 나타나는 어휘-의미 상호작용)

  • Kim, Joonwoo;Kang, Kathleen Gwi-Young;Yoo, Doyoung;Jeon, Inseo;Kim, Hyun Kyung;Nam, Hyeomin;Shin, Jiyoung;Nam, Kichun
    • Phonetics and Speech Sciences
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • The present study investigated the mental representation and processing of an ambiguous word in the bimodal processing system by manipulating the lexical ambiguity of a visually or auditorily presented word. Homonyms (e.g., '물었다') with more than two meanings and control words (e.g., '고통을') with a single meaning were used in the experiments. The lemma frequency of words was manipulated while the relative frequency of multiple meanings of each homonym was balanced. In both experiments using the lexical decision task, a robust frequency effect and a critical interaction of word type by frequency were found. In Experiment 1, spoken homonyms yielded faster latencies relative to control words (i.e., ambiguity advantage) in the low frequency condition, while ambiguity disadvantage was found in the high frequency condition. A similar interactive pattern was found in visually presented homonyms in the subsequent Experiment 2. Taken together, the first key finding is that interdependent lexico-semantic processing can be found both in the visual and auditory processing system, which in turn suggests that semantic processing is not modality dependent, but rather takes place on the basis of general lexical knowledge. The second is that multiple semantic candidates provide facilitative feedback only when the lemma frequency of the word is relatively low.

Transition-Based Korean Dependency Parsing using Bidirectional LSTM (Bidirectional LSTM을 이용한 전이기반 한국어 의존 구문분석)

  • Ha, Tae-Bin;Lee, Tae-Hyeon;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.527-529
    • /
    • 2018
  • 초기 자연언어처리에 FNN(Feedforward Neural Network)을 적용한 연구들에 비해 LSTM(Long Short-Term Memory)은 현재 시점의 정보뿐만 아니라 이전 시점의 정보를 담고 있어 문장을 이루는 어절들, 어절을 이루는 형태소 등 순차적인(sequential) 데이터를 처리하는데 좋은 성능을 보인다. 본 논문에서는 스택과 버퍼에 있는 어절을 양방향 LSTM encoding을 이용한 representation으로 표현하여 전이기반 의존구문분석에 적용하여 현재 UAS 89.4%의 정확도를 보였고, 자질 추가 및 정제작업을 통해 성능이 개선될 것으로 보인다.

  • PDF

Korean Spell Correction Using Collocation of Morphemes (형태소간의 의존 관계에 따른 오류 유형 추정 함수를 이용한 한국어 철자 오류 교정)

  • Sim, Chul-Min;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.493-498
    • /
    • 1994
  • 기존 철자 검사/교정기들은 한 어절을 구성하는 형태소들의 품사 정도만을 이용하고 있다. 때문에 철자 검사나 교정의 정확도 면에서 한계를 가진다. 본 논문에서는 한국어의 구문적 연관 관계 및 구문 내에 존재하는 단어들 간의 의미적 연관관계 등을 바탕으로 오류 유형을 추정하는 오류 유형 추정 함수를 제안하고, 이를 이용한 철자 교정기를 구현하였다. 본 논문에서 구현한 오류 유형 추정 함수를 이용한 철자 검사/교정기는 한 어절에 국한되었던 철자 검사/교정의 범위를 여러 어절로 확장하고자 하는 시도의 시발이라 할 수 있다. 따라서 구문 검사 및 의미 검사를 수행하는 문체 검사기의 원형으로서 그 의의를 가진다.

  • PDF

An HMM Part-of-Speech Tagger for Korean Based on Wordphrase (어절구조를 반영한 은닉 마르코프 모텔을 이용한 한국어 품사태깅)

  • Shin, Jung-Ho;Han, Young-Seok;Park, Young-Chan;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.389-394
    • /
    • 1994
  • 말뭉치에 품사를 부여하는 일은 언어연구의 중요한 기초가 된다. 형태소 해석의 모호한 결과로부터 한 가지 품사를 선정하는 작업을 태깅이라고 한다. 한국어에서 은닉 마르코프 모델 (Hidden Markov Model)을 이용한 태깅은 형태소 관계만 흑은 어절관계만을 이용한 방법이 있어 왔다. 본 논문에서는 어절관계와 형태소관계를 동시에 은닉 마르코프 모델에 반영하여 태깅의 정확도를 높인 모델을 제시한다. 제안된 방법은 품사의 변별력은 뛰어나지만 은닉 마르코프 모델의 노드의 수가 커짐으로써 형태소만을 고려한 방법보다 더 많은 학습데이타를 필요로 한다. 실험적으로 본 논문의 방법이 기존의 방법보다 높은 정확성을 가지고 있음이 검증되었다.

  • PDF

Comparison between Markov Model and Hidden Markov Model for Korean Part-of-Speech and Homograph Tagging (한국어 품사 및 동형이의어 태깅을 위한 마르코프 모델과 은닉 마르코프 모델의 비교)

  • Shin, Joon-Choul;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.152-155
    • /
    • 2013
  • 한국어 어절은 많은 동형이의어를 가지고 있기 때문에 주변 어절(또는 문맥)을 보지 않으면 중의성을 해결하기 어렵다. 이런 중의성을 해결하기 위해서 주변 어절 정보를 입력받아 통계적으로 의미를 선택하는 기계학습 알고리즘들이 많이 연구되었으며, 그 중에서 특히 은닉 마르코프 모델을 활용한 연구가 높은 성과를 거두었다. 일반적으로 마르코프 모델만을 기반으로 알고리즘을 구성할 경우 은닉 마르코프 모델 보다는 단순하기 때문에 빠르게 작동하지만 정확률이 낮다. 본 논문은 마르코프 모델을 기반으로 하면서, 부분적으로 은닉 마르코프 모델을 혼합한 알고리즘을 제안한다. 실험 결과 속도는 마르코프 모델과 유사하며, 정확률은 은닉 마르코프 모델에 근접한 것으로 나타났다.

  • PDF

Automatic Word-Spacing of Syllable Bi-gram Information for Korean OCR Postprocessing (음절 Bi-gram정보를 이용한 한국어 OCR 후처리용 자동 띄어쓰기)

  • Jeon, Nam-Youl;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.95-100
    • /
    • 2000
  • 문자 인식기를 가지고 스캔된 원문 이미지를 인식한 결과로 형태소 분석과 어절 분석을 통해 대용량의 문서 정보를 데이터베이스에 구축하고 전문 검색(full text retrieval)이 가능하도록 한다. 그러나, 입력문자가 오인식된 경우나 띄어쓰기가 잘못된 데이터는 형태소 분석이나 어절 분석에 그대로 사용할 수가 없다. 한글 문자 인식의 경우 문자 단위의 인식률은 약 90.5% 정도나 문자 인식 오류와 띄어쓰기 오류 등을 고려한 어절 단위의 인식률은 현저하게 떨어진다. 이를 위해 한국어의 음절 특성을 고려해서 사전을 기반하지 않고 학습이 잘된 말뭉치(corpus)와 음절 단위의 bigram 정보를 이용한 자동 띄어쓰기를 하여 실험한 결과 학습 코퍼스의 크기와 띄어쓰기 오류 위치 정보에 따라 다르지만 약 86.2%의 띄어쓰기 정확도를 보였다. 이 결과를 가지고 형태소 분석과 언어 평가 등을 이용한 문자 인식 후처리 과정을 거치면 문자 인식 시스템의 인식률 향상에 크게 영향을 미칠 것이다.

  • PDF

KMM: A Detailed Morphological Analysis for Korean (구조화된 상세 정보를 제공하는 한국어 형태소 분석기: KMM)

  • Kim, Soora
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.202-206
    • /
    • 2010
  • 이 논문에서는 한국어 형태소 분석기 KMM(Korean Malaga Morphology)을 소개하고자 한다. KMM의 개발 동기는 이후 자연언어 처리 단계의 기반으로 사용될 수 있을 뿐 아니라 이론 형태론 연구의 도구로도 사용될 수 있도록 상세한 형태 동사 의미 정보를 제공하는 것이었다. 이론적 틀은 좌연접 문법(Left-Associative Grammar)에 기초한 LA-MORPH이며, 좌연접 기반 문법 개발 도구인 MALAGA로 구현되었다. LA-MORPH에 기반한 KMM은 분석 실행중이 아닐 때에는 사전의 규모를 최소한으로 유지하다가 분석에 필요할 때에만 분석용 사전을 자동으로 생성한다. 형태소 분석은 분석용 사전에 근거하여, 매칭과 결합이라는 단순한 알고리즘만을 사용한다. KMM의 분석은 동사 어절의 경우, 시제, 서법, 문형, 대우법, 명사 어절의 경우 격정보, 수사 결합어절의 경우 추출된 수랑 정보 등과 같은 상세한 정보를 제시한다. 세종 말뭉치와 KIBS 말뭉치를 KMM 을 이용해서 분석한 결과 각각의 94.96%와 94.59%의 분석률과 88.4%와 90.7%의 정확도를 보였다.

  • PDF

Korean Head-Tail POS-Tagger by using Transformer (Transformer를 이용한 한국어 Head-Tail 품사 태거)

  • Kim, Jung-Min;Suh, Hyun-Jae;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.544-547
    • /
    • 2021
  • 한국어의 품사 태깅 문제는 입력 어절의 형태소 분석 후보들로부터 통계적으로 적절한 품사 태그를 가지는 후보들을 찾는 방식으로 해결하여 왔다. 어절을 형태소 단위로 분리하고 품사를 부착하는 기존의 방식은 품사태그 정보를 딥러닝 feature로 사용할 때 문장의 의미를 이해하는데 복잡도를 증가시키는 요인이 된다. 본 연구에서는 품사 태깅 문제를 단순화 하여 한 어절을 Head와 Tail이라는 두 가지 유형의 형태소 토큰으로 분리하여 Head와 Tail에 대해 품사를 부착한다. Head-Tail 품사 태깅 방법을 Sequence-to-Sequence 문제로 정의하여 Transformer를 이용한 Head-Tail 품사 태거를 설계하고 구현하였다. 학습데이터로는 KCC150 말뭉치의 품사 태깅 말뭉치 중에서 788만 문장을 사용하고, 실험 데이터로는 10만 문장을 사용하였다. 실험 결과로 토큰 정확도는 99.75%, 태그 정확도는 99.39%, 토큰-태그 정확도는 99.31%로 나타났다.

  • PDF

Real Time Recognition of Unknown Words based on the Analysis of Similar Words with an Extended Definition (확장 정의된 유사어절의 분석에 근거한 실시간 미등록어 인식)

  • Park, Bong-Rae;Hwang, Young-Sook;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.222-228
    • /
    • 1996
  • 기존의 미등록어 추정 방법은 대부분 단일 어절 접근 방법으로 단일 어절에서 추출할 수 있는 추정 정보가 부족하여 과분석과 오분석의 가능성이 높았다. 그래서 동일 미등록어를 가진 어절들을 동시에 분석하는 유사 어절 접근 방법이 제시되었다. 그러나 이 방법도 유사 어절의 범위를 조사나 어미만 다른 어절로 정의함으로써 수집될 수 있는 유사 어절의 수가 제한되어 대략의 텍스트에서만 적용이 가능하였다. 이에 본 논문은 유사어절을 동일 음절열을 공유하는 어절들로 확장 정의하여 작은 크기 N의 텍스트 윈도우에서 유사 어절의 발견 가능성을 높임으로써 실시간으로 미등록어를 추정할 수 있게 하는 방법을 제시한다. N을 100으로 한 실험결과는 미등록어 추정 정확도가 99.3%였고 재현율은 약 32%였다.

  • PDF