• Title, Summary, Keyword: 한국어 디비피디아

Search Result 8, Processing Time 0.042 seconds

DBpedia Ontology Population Coverage Enhancement with FrameNet (프레임넷을 통한 디비피디아 온톨로지 인스턴스 생성의 커버리지 개선)

  • Hahm, Younggyun;Seo, Jiwoo;Hwang, Dosam;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.32-37
    • /
    • 2014
  • 비구조 텍스트로부터 지식을 추출하여 온톨로지 기반 지식베이스를 구축하는 연구가 최근 국내외로 다양하게 진행되고 있다. 이러한 목적을 달성하기 위해서는 자연어 텍스트에서 나타난 지식요소들의 다양한 속성들을 표현할 수 있는 온톨로지를 필요로 한다. 디비피디아 역시 위키피디아의 지식들을 표현하기 위하여 디비피디아 온톨로지를 사용한다. 그러나 디비피디아 온톨로지는 위키피디아의 인포박스에 기반한 온톨로지로서, 요약된 정보를 설명하기에는 적합할 수 있으나 자연어 텍스트로 표현된 다양한 지식표현을 충분히 커버하는 것은 보증되지 않는다. 본 논문에서는 자연어 텍스트로 쓰여진 지식을 디비피디아 온톨로지가 충분히 표현할 수 있는지를 검토하고, 또한 그 불완전성을 프레임넷이 어느정도까지 보완할 수 있는지를 살핀다. 이를 통해 한국어 텍스트로부터 지식베이스를 자동구축하는 온톨로지 인스턴스 자동생성 연구의 방향으로서 디비피디아 온톨로지와 프레임넷의 효용성을 전망한다.

  • PDF

A Non-morphological Approach for DBpedia URI Spotting within Korean Text (한국어 텍스트의 개체 URI 탐지: 품사 태깅 독립적 개체명 인식과 중의성 해소)

  • Kim, Youngsik;Hahm, Younggyun;Kim, Jiseong;Hwang, Dosam;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.100-106
    • /
    • 2014
  • URI spotting (탐지) 문제는 텍스트에 있는 단어열 중에서 URI로 대표되는 개체(entity)에 해당되는 것을 탐지하는 것이다. 이 문제는 두 개의 작은 문제를 순차적으로 해결하는 과제이다. 즉, 첫째는 어느 단어열이 URI에 해당하는 개체인가를 인식하는 것이고, 둘째는 개체 중의성 해소 문제로서 파악된 개체가 복수의 URI에 해당할 수 있는 의미적 모호성이 있을 때 그 URI중 하나를 선택하여 모호성을 해소하는 것이다. 이 논문은 디비피디아 URI를 대상으로 한다. URI 탐지 문제는 개체명 인식 문제와 비슷하나, URI(예를 들어 디비피디아 URI, 즉 Wikipedia 등재어)에 매핑될 수 있는 개체로 한정되므로 일반적인 개체명 인식 문제에서 단어열의 품사열이 기계학습의 자질로 들어가는 방법론과는 다른 자질을 사용할 수 있다. 이 논문에서는 한국어 텍스트를 대상으로 한국어 디비피디아 URI 탐지문제로서 SVM을 이용한 개체경계 인식 방법을 제시하여, 일반적 개체명 인식에서 나타나는 품사태거의 오류파급효과를 없애고자 한다. 또한 개체중의성 해소 문제는 의미모호성이 주변 문장들의 토픽에 따라 달라지므로, LDA를 활용하며 이를 영어 디비피디아 URI탐지에서 쓰인 방법들과 비교한다.

  • PDF

LDA-based Approach for URI Disambiguation and Error Reduction (URI 중의성 해소 및 오류 감소를 위한 LDA 기반 접근법)

  • Kim, Jiseong;Kim, Youngsik;Hahm, Younggyun;Hwang, Dosam;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.107-111
    • /
    • 2014
  • URI 중의성 해소 문제는 주어진 문서 내의 특정 단어에 연결 가능한 여러 URI가 주어졌을 때 진짜 URI 하나를 선택해내는 문제라고 할 수 있다. 이 문제는 다양한 해결법들이 존재할 수 있지만 기존에 연구된 문서의 문맥 간 유사도를 이용하여 해결하는 방법을 본 논문에서는 사용한다. 문맥 간 유사도를 이용하는 방법은 영어 디비피디아 URI spotting에서 TF*ICF방법으로 이미 연구가 되어있다. 본 논문에서는 Latent Dirichlet Allocation을 이용하여 URI 중의성 해소 문제를 다룰 것이며 그 범위를 한국어 디비피디아로 한정한다. 새로 제안하는 방법이 URI 중의성 해소 문제를 얼마나 잘 해결하며, 기존의 연구와 비교하여 얼마나 향상될 수 있는지를 분석한다. 또한 기존의 방법과 새로 제안한 방법 각자가 고유하게 풀 수 있는 문제가 존재함을 보이고, 두 방법을 병합하였을 때 보다 높은 성능에 도달할 수 있음을 전망한다.

  • PDF

Construction of K-YAGO Based on Machine Learning (기계학습 기반 K-YAGO 구축)

  • Jeong, Seokwon;Choi, Maengsik;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.161-163
    • /
    • 2014
  • 자연어 처리를 이용한 다양한 응용 시스템에서 지식베이스는 중요한 요소이다. 지식베이스의 대표적인 예로 YAGO와 디비피디아 등이 있다. YAGO는 고성능의 지식베이스지만 한국어를 지원하지 않는다는 문제점이 있다. 그리고 디비피디아는 한국어를 지원하지만 트리플의 속성이 세분화되어 있어서 사용이 어렵다. 본 논문에서는 YAGO와 디비피디아의 트리플을 매칭하여 디비피디아 트리플의 속성을 YAGO에서 사용하는 관계명으로 변환하고 MEM을 이용해 매칭되지 않은 트리플의 속성을 자동으로 분류하는 시스템을 제안한다. 제안한 방식으로 실험한 결과 F1-Measure 79.04%의 성능을 보였다.

  • PDF

A method of Automatic Schema Evolution on DBpedia Korea (한국어 디비피디아의 자동 스키마 진화를 위한 방법)

  • Kim, Sundong;Kang, Minseo;Lee, Jae-Gil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.741-744
    • /
    • 2014
  • 디비피디아 온톨로지는 위키피디아에서 구조화된 데이터를 추출한 지식 베이스이다. 이러한 지식 베이스의 자동 증강은 웹을 구조화하는 속도를 증가시키는데 큰기여를 할 수 있다. 본 연구에서는 한국어 디비피디아를 기반으로 새로운 트리플을 입력받아 기존의 지식 베이스를 자동 증강시키는 시스템을 소개한다. 스키마를 자동 증강하는 두 가지 알고리즘은 최하위 레벨인 인스턴스가 지닌 프로퍼티, 즉 rdf-triple 단위에서 진행되었다. 알고리즘을 사용한 결과 첫째, 확률적 격상 방법을 통해 단계별로 입력받는 인스턴스와 하위 클래스의 프로퍼티를 이용하여 상위 클래스의 스키마가 정교해졌다. 둘째, 이를 바탕으로 타입 분류가 되어 있지 않았던 인스턴스들이 가장 가까운 타입에 자동 분류되었다. 지식 베이스가 정교해지면서 재분류된 인스턴스와 새로운 트리플셋을 바탕으로 두 가지 알고리즘은 반복적으로 작동하며, 한국어 디비피디아 지식 베이스의 자동 증강을 이루었다.

Matrix Factorization Models for Knowledge Base Population (지식베이스 확장을 위한 행렬 분해 모델)

  • Kim, Jiho;Nam, Sangha;Choi, Key-Sun
    • 한국어정보학회:학술대회논문집
    • /
    • /
    • pp.3-7
    • /
    • 2017
  • 지식베이스의 목표는 세상의 모든 지식을 데이터베이스화 하는 것이지만 지식 획득 능력의 부족으로 항상 지식 부족 문제에 시달린다. 지식 획득은 주로 웹 상에 있는 자연언어문장을 지식화 하는 외부적인 지식 획득을 통해 이루어지지만, 지식베이스 내부에서 지식을 확장해 나가는 방법에 대해서는 연구가 소홀히 이루어지고 있다. 따라서 본 논문에서는 내부적인 지식 획득을 위한 지식베이스 행렬 분해 모델을 소개한다. 본 논문에서 소개하는 방법은 지식베이스를 행렬로 변환한 뒤 행렬 분해 모델을 통해 새로운 지식에 대한 신뢰도를 점수화하는 방법이다. 본 논문에서 소개한 방법의 우수성과 실효성을 입증하기 위해 한국어 지식베이스인 한국어 디비피디아(2016-10)를 대상으로 본 모델의 정확도 측정 실험 결과를 소개한다.

  • PDF

Matrix Factorization Models for Knowledge Base Population (지식베이스 확장을 위한 행렬 분해 모델)

  • Kim, Jiho;Nam, Sangha;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.3-7
    • /
    • 2017
  • 지식베이스의 목표는 세상의 모든 지식을 데이터베이스화 하는 것이지만 지식 획득 능력의 부족으로 항상 지식 부족 문제에 시달린다. 지식 획득은 주로 웹 상에 있는 자연언어문장을 지식화 하는 외부적인 지식 획득을 통해 이루어지지만, 지식베이스 내부에서 지식을 확장해 나가는 방법에 대해서는 연구가 소홀히 이루어지고 있다. 따라서 본 논문에서는 내부적인 지식 획득을 위한 지식베이스 행렬 분해 모델을 소개한다. 본 논문에서 소개하는 방법은 지식베이스를 행렬로 변환한 뒤 행렬 분해 모델을 통해 새로운 지식에 대한 신뢰도를 점수화하는 방법이다. 본 논문에서 소개한 방법의 우수성과 실효성을 입증하기 위해 한국어 지식베이스인 한국어 디비피디아(2016-10)를 대상으로 본 모델의 정확도 측정 실험 결과를 소개한다.

  • PDF

Automatic Construction of a Named Entity Dictionary for Named Entity Recognition (개체명 인식을 위한 개체명 사전 자동 구축)

  • Jeon, Wonpyo;Song, Yeongkil;Choi, Maengsik;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.82-85
    • /
    • 2013
  • 개체명 인식기에 대한 연구에서 개체명 사전은 필수적으로 필요하다. 그러나 공개된 개체명 사전은 거의 없기 때문에, 본 논문에서는 디비피디아의 데이터로부터 개체명을 효과적으로 추출하여 자동으로 구축할 수 있는 방법을 제안한다. 제안 방법은 엔트리의 '이름'과 '분류' 정보를 사용한다. 엔트리의 '이름'은 개체명으로 사용하고, 엔트리의 '분류'는 각 개체명 클래스와의 상호정보량을 계산하여 엔트리와 개체명 클래스 사이의 점수를 계산한다. 이렇게 계산된 점수를 이용하여 개체명과 개체명 클래스를 매핑한다. 그 결과 76.7%의 평균 정확률을 보였다.

  • PDF