Matrix Factorization Models for Knowledge Base Population

지식베이스 확장을 위한 행렬 분해 모델

  • Published : 2017.10.13

Abstract

지식베이스의 목표는 세상의 모든 지식을 데이터베이스화 하는 것이지만 지식 획득 능력의 부족으로 항상 지식 부족 문제에 시달린다. 지식 획득은 주로 웹 상에 있는 자연언어문장을 지식화 하는 외부적인 지식 획득을 통해 이루어지지만, 지식베이스 내부에서 지식을 확장해 나가는 방법에 대해서는 연구가 소홀히 이루어지고 있다. 따라서 본 논문에서는 내부적인 지식 획득을 위한 지식베이스 행렬 분해 모델을 소개한다. 본 논문에서 소개하는 방법은 지식베이스를 행렬로 변환한 뒤 행렬 분해 모델을 통해 새로운 지식에 대한 신뢰도를 점수화하는 방법이다. 본 논문에서 소개한 방법의 우수성과 실효성을 입증하기 위해 한국어 지식베이스인 한국어 디비피디아(2016-10)를 대상으로 본 모델의 정확도 측정 실험 결과를 소개한다.

Keywords