문서의 제목은 문서의 내용을 가장 효율적으로 요약하여 제공해 준다. 이때 독자들이 선호하는 스타일과 언어에 따라 문서의 제목을 다르게 제공해 준다면, 독자들은 문서의 내용을 좀 더 쉽게 예측할 수 있다. 본 연구에서는 문서가 주어졌을 때 언어와 스타일에 따라 제목을 자동 생성하는'교차 언어 및 스타일 기반의 제목 생성 모델을 제안한다. 모델을 학습하기 위해서는 같은 내용을 다른 언어와 다른 스타일로 작성한 병렬데이터가 필요하다. 그러나 이러한 종류의 병렬데이터는 구축하기 매우 어렵다. 반면, 단일 언어와 단일 스타일로 구축된 제목 생성 데이터는 많으므로 본 연구에서는 제로샷(zero-shot) 학습으로 제목 생성을 수행하고자 한다. 교차 언어 및 스타일 기반의 제목 생성을 학습하기 위해 다중 언어로 사전 학습된 트랜스포머 모델에 각 언어, 스타일, 기계번역을 위한 어댑터를 추가하였다. 기계 번역용 병렬데이터를 이용하여 기계번역을 먼저 학습한 후, 동일 스타일의 제목 생성을 학습하였다. 이때, 필요한 어댑터만을 학습하고 다른 부분의 파라미터는 모두 고정시킨다. 교차 언어 및 스타일 기반의 제목을 생성할 때에는 목적 언어와 목적 스타일에 해당하는 어댑터만을 활성화시킨다. 실험 결과로는 각 모델을 따로 학습시켜 파이프라인으로 연결시킨 베이스라인에 비해 본 연구에서 제안한 제로샷 제목 생성의 성능이 크게 떨어지지 않았다. 최근 대규모 언어 모델의 등장으로 인한 자연어 생성에서의 많은 변화가 있다. 그러나 제한된 자원과 제한된 데이터만을 이용하여 자연어 생성의 성능을 개선하는 연구는 계속되어야 하며, 그런 점에서 본 연구의 의의를 모색한다.
본 논문에서는 동적 메쉬 부/복호화 시 스케일러빌리티 기능을 지원하기 위해 SHVC의 계층적 부호화 방식을 기반으로 텍스처 맵을 압축하는 방법을 제안한다. 제안하는 방법은 고해상도 텍스처 맵을 다운샘플링하여 다해상도의 텍스처 맵을 생성하고 이를 SHVC로 부호화함으로써 효과적으로 다해상도 텍스처 맵들의 중복성을 제거한다. 동적 메쉬 복호화기에서는 수신기 성능, 네트워크 환경 등에 따라 적합한 해상도의 텍스처 맵을 복호화하여 메쉬 데이터의 스케일러빌리티를 지원할 수 있도록 한다. 제안하는 방법의 성능을 검증하기 위해 V-DMC (Video-based Dynamic Mesh Coding) 참조 소프트웨어인 TMMv1.0에 제안하는 방법을 적용하고 본 논문에서 제안하는 스케일러블 부/복호화기와 TMMv1.0 기반의 시뮬캐스트 방식의 성능을 비교하였다. 제안하는 방법은 시뮬캐스트 방법 대비 AI, LD 환경에서 Luma BD-rate (Luma PSNR)가 각각 평균 -7.7%, -5.7%의 향상된 결과를 얻어 제안하는 방법을 통해 효과적으로 동적 메쉬 데이터의 텍스처 맵 스케일러빌리티 지원이 가능함을 확인하였다.
최근 데이터 활용이 중요해짐에 따라 데이터 센터의 중요도도 함께 높아지고 있다. 하지만 데이터 센터는 막대한 전력을 소모함과 동시에 24시간 가동되는 시설이기 때문에 환경적, 경제적 측면에서 문제가 되고 있다. 최근 딥러닝 기법들을 사용하여 트래픽을 예측하거나, 데이터 센터나 서버에서 사용되는 전력을 줄이는 연구들이 다양한 관점에서 이루어지고 있다. 그러나 서버에서 처리되는 트래픽 데이터양은 변칙적이며 이는 서버를 관리하기 어렵게 만든다. 또한, 서버 상황에 따라 서버를 가변적으로 관리하는 기법에 대한 연구들이 여전히 많이 요구되고 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 시계열 데이터 예측에 강세를 보이는 장단기 기억 신경망 (Long-Term Short Memory, LSTM)을 기반으로 한 가변적인 서버 관리 기법을 제안한다. 제안된 모델을 통해 서버에서 사용되는 전력을 보다 효과적으로 줄일 수 있게 되며, 현업환경에서 이전보다 안정적이고 효율적으로 서버를 관리할 수 있게 된다. 제안된 모델의 검증을 위해 위키피디아 (Wikipedia)의 데이터 센터 중 6개의 데이터 센터의 전송 및 수신 트래픽 데이터를 수집한 뒤 통계기반 분석을 통해 각 트래픽 데이터의 관계를 분석 및 실험을 수행하였다. 실험 결과 본 논문에서 제안된 모델의 유의미한 성능을 통계적으로 검증하였으며 서버 관리를 안정적이고 효율적으로 수행할 수 있음을 보여주었다.
길거리에서 묻지마 범죄가 자주 발생함에 따라 CCTV의 보급이 증가하고 있다. 그러나 수동적으로 작동되는 CCTV의 단점 때문에 지능형 CCTV의 필요성이 주목 받고 있다. 이러한 지능형 CCTV의 무거운 시스템 때문에, 높은 성능의 기기들이 필요해 일반 CCTV를 대체하는데 비용적 측면에서 부담이 발생한다. 이 문제를 해결하기 위해 낮은 품질의 영상도 인식하며 높지 않은 성능의 기기에서도 시스템이 구동되는 지능형 CCTV 시스템이 필요하다. 따라서 본 논문은 AWS 기반 플랫폼을 활용하여 시스템을 경량화하고 영상을 텍스트화하여 실시간으로 위협을 감지할 수 있는 Saying CCTV 시스템을 제안한다. 이는 YOLO v4와 OpenPose를 사용해 추출한 데이터를 바탕으로 위험 객체와 위협 행동 그리고 위협 상황을 판단하며, 위험도를 머신러닝으로 계산하도록 구현하였다. 이를 통해, 언제 어디서나 네트워크만 연결되면 시스템을 동작시킬 수 있으며, 영상 촬영과 이미지 업로드가 최소한의 성능의 기기에서도 시스템 사용이 가능하다. 나아가 영상을 분석하여 텍스트로 저장되는 데이터들로 하여금 범죄의 유의미한 통계를 자동화하여 신속한 범죄 예방이 가능하다.
리튬 이온 배터리는 사용 환경과 양극재 조합 비율에 따라 배터리의 성능이 좌우된다. 고성능 리튬 이온 배터리를 개발하기 위해서는 양극재 비율을 다양하게 변화시켜가면서 배터리를 제작하고 성능을 측정해야 한다. 하지만 모든 변수 조합에 대해 배터리를 제작하고 성능을 측정하기에는 많은 시간과 비용이 소모된다. 그렇기 때문에 최근에는 데이터 기반으로 인공지능 모델을 활용하여 배터리의 성능을 예측하고자 하는 연구가 활발히 진행되고 있다. 그러나 기존 공개 배터리 데이터는 동일한 배터리로 측정 실험을 하였기 때문에 양극재 조합 비율은 고정되어 있어서 데이터 속성으로 포함되지 않았다. 본 논문에서는 양극재 소재 조합 비율에 따른 배터리의 성능을 예측할 수 있는 인공지능 모델 개발에 필요한 학습 데이터 모델을 정의한다. 우리는 리튬 이온 배터리의 성능에 영향을 미칠 수 있는 요인을 분석하여 양극재 소재별 질량과 배터리 사용 환경을 입력데이터로, 배터리의 출력과 용량을 목적 데이터로 정의하였다. 공개 배터리 데이터 중에는 양극재 비율이 포함된 데이터가 없어 양극재 비율을 모두 동일한 값으로 설정한 제한된 데이터로 다중 선형회귀 분석, 서포트 벡터 회귀분석, 다중 로지스틱 회귀 분석, LSTM 분석을 수행하였다. 실험 환경이 다른 배터리 데이터에서 각각의 배터리 데이터는 고유한 패턴을 유지하였으며, 배터리 분류 모델은 각각의 배터리를 약 2%의 오차로 분류하는 것으로 나타났다.
본 연구에서는 신뢰성관리의 측면에서 우리나라에서 시행하고 있는 품질경영기사 시험에서 신뢰성관리 부문의 문제점과 개선방안에 대해 살펴보았다. 우선 용어가 통일되어 있지 않고, 신뢰성분석에 꼭 필요한 일부 기법들이 포함되지 않은 것에 문제가 있는 것으로 보인다. 본 연구에서는 우리나라 사람이 종종 취득하는 외국(특히 미국)의 품질 및 신뢰성과 관련된 자격제도에 대해서도 살펴보았다. 특히 CRE 시험은 우리나라의 품질경영기사 시험 내 신뢰성관리 부문의 내용과 거의 중첩됨을 알 수 있다. 하지만 미국은 오픈북 시험인 반면 우리나라는 그렇지 않으므로 수험자 편에서는 외워야 할 식이 너무 많다는 것이 문제이다. 또한 데이터에 대한 분석을 컴퓨터 소프트웨어를 사용하지 않고 수작업으로 해야 한다. 우리나라 시험도 CRE 시험에서와 같이 오픈북 시험을 본다면 단편적인 지식을 뛰어넘어 신뢰성관리에서 꼭 필요한 요소를 갖췄는지 점검할 수 있는 시험이 될 것이다. 마지막으로 우리나라도 미국에서와 같이 자격시험을 통과한 경우 일정 기간 내 교육, 업무 등을 통해 재인증을 받도록 한다면 정보의 홍수 속에 살고 있는 현대인에 걸맞은 자격증이 될 것이다.
짧은 영상 클립을 공유하는 지식공유 플랫폼으로서 TikTok이 많은 주목을 받고 있다. 이러한 TikTok에 대한 폭발적인 관심은 지식공유 플랫폼으로서의 비즈니스 가치가 크다는 점을 시사한다. 본 연구는 질적, 탐색적 접근을 통해 지식거래산업의 발전 현황과 함께 TikTok에서 어떠한 요인이 지식상품에 대한 사용자의 구매 결정에 영향을 미치는가를 규명하고자 하였다. 연구방법론으로서 10명에 대한 심층 인터뷰와 함께 95명의 지식 제공자의 동영상을 관찰한 결과, TikTok은 지식거래 산업을 발전시킬 수 있는 비즈니스 잠재력을 가지고 있었으며, ATLAS ti 소프트웨어를 이용한 10명의 심층 인터뷰에서 수집한 데이터를 코딩한 결과, 수요자 특성, 제공자 특성, 플랫폼 특성 및 제품 특성 등의 네 가지 핵심적 요인이 TikTok에서 지식제품에 대한 사용자의 구매결정에 영향을 미친다는 점을 밝혔다. 근거이론을 기반으로 감정적 니즈, 전문성 니즈, 품질, 가격, 도움성, 가치, 카리스마, 신뢰, 서비스 보증, 희소성 등 10개의 변수로 구성된 이론적 모델이 도출되고 제시되었다. 또한 연구발견점에 따른 이론적 시사점과 실무적 시사점이 토의된다.
문장 압축은 원본 문장의 중요한 의미는 유지하면서 길이가 축소된 압축 문장을 생성하는 자연어처리 태스크이다. 문법적으로 적절한 문장 압축을 위해, 초기 연구들은 사람이 정의한 언어 규칙을 활용하였다. 또한 시퀀스-투-시퀀스 모델이 기계 번역과 같은 다양한 자연어처리 태스크에서 좋은 성능을 보이면서, 이를 문장 압축에 활용하고자 하는 연구들도 존재했다. 하지만 언어 규칙을 활용하는 연구의 경우 모든 언어 규칙을 정의하는 데에 큰 비용이 들고, 시퀀스-투-시퀀스 모델 기반 연구의 경우 학습을 위해 대량의 데이터셋이 필요하다는 문제점이 존재한다. 이를 해결할 수 있는 방법으로 사전 학습된 언어 모델인 BERT를 활용하는 문장 압축 모델인 Deleter가 제안되었다. Deleter는 BERT를 통해 계산된 perplexity를 활용하여 문장을 압축하기 때문에 문장 압축 규칙과 모델 학습을 위한 데이터셋이 필요하지 않다는 장점이 있다. 하지만 Deleter는 perplexity만을 고려하여 문장을 압축하기 때문에, 문장에 속한 단어들의 언어 정보를 반영하여 문장을 압축하지 못한다. 또한, perplexity 측정을 위한 BERT의 사전 학습에 사용된 데이터가 압축 문장과 거리가 있어, 이를 통해 측정된 perplexity가 잘못된 문장 압축을 유도할 수 있다는 문제점이 있다. 이를 해결하기 위해 본 논문은 언어 정보의 중요도를 수치화하여 perplexity 기반의 문장 점수 계산에 반영하는 방법을 제안한다. 또한 고유명사가 자주 포함되어 있으며, 불필요한 수식어가 생략되는 경우가 많은 뉴스 기사 말뭉치로 BERT를 fine-tuning하여 문장 압축에 적절한 perplexity를 측정할 수 있도록 하였다. 영어 및 한국어 데이터에 대한 성능 평가를 위해 본 논문에서 제안하는 LI-Deleter와 비교 모델의 문장 압축 성능을 비교 실험을 진행하였고, 높은 문장 압축 성능을 보임을 확인하였다.
딥러닝을 이용한 한글 생성 모델에 대한 연구가 많이 진행되었으며, 최근에는 한글 1벌을 생성하기 위하여 입력되는 글자 수를 얼마나 최소화할 수 있는지(Few-Shot Learning)에 대하여 연구되고 있다. 본 논문은 28개 글자를 사용하는 CKFont (이하 CKFont1) 모델을 분석하고 개선하여 14개 글자만을 사용하는 CKFont2 모델을 제안한다. CKFont2 모델은 28글자로 51개 한글 구성요소를 추출하여 모든 한글을 생성하는 CKFont1 모델을, 24개의 구성요소(자음 14개와 모음 10개)를 포함한 14개의 글자만을 이용하여 모든 한글을 생성하는 모델로 성능을 개선하였으며, 이는 현재 알려진 모델로서는 최소한의 글자를 사용한다. 한글의 기본 자/모음으로부터 쌍자음(5), 복자음(11)/복모음(11) 등 27개를 딥러닝으로 학습하여 생성하고, 생성된 27개 구성요소를 24개의 기본 자/모음과 합한 51개 구성요소로부터 모든 한글을 자동 생성한다. zi2zi, CKFont1, MX-Font 모델 생성 결과와 비교 분석하여 성능의 우수성을 입증하였으며, 구조가 간결하고 시간과 자원이 절약되는 효율적인 모델로 한자나 태국어, 일본어에도 확장 적용이 가능하다.
논문에서는 어닐링 시뮬레이션에 근거한 인공 뉴럴 네트워크를 구축한다. 미세 유동채널의 전기화학적 가공 파라미터와 채널 형태 간의 매핑은 샘플의 학습에 의하여 이루어진다. 스텐리스강 표면에 대한 미세 유동채널의 전기화학적 가공의 깊이와 넓이가 예측되고, 형성된 네트워크 모델을 입증하기 위한 NaNO3 해 내부의 펄스 전원공급기와 함께 유동채널의 실험이 진행된다. 결과적으로, "4-7-2" 구조를 갖는 인공 뉴럴 네트워크에 의한 어닐링 시뮬레이션으로 예측된 채널의 깊이와 넓이는 실험값에 매우 근접한다. 그 오차는 5.3% 미만이다. 예측된 데이터와 실험 데이터는 전기화학적 가공 과정에서의 에칭 규격이 전압 및 전류의 밀도와 매우 밀접한 관계가 있음을 보여준다. 전압이 5V보다 작을 때에는 채널 내에 "작은 섬"이 형성된다; 반면에 전압이 40V보다 클 때에는 채널의 측면 에칭이 비교적 크고 채널 사이의 "댐"은 사라지게 된다. 전압이 25V일 때 채널의 가공 형태는 최적이 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.