• Title/Summary/Keyword: 한계지지하중

Search Result 63, Processing Time 0.02 seconds

PWR 운전조건하에서 원주방향 균열을 가진 페라이틱 배관의 파괴 거동에 관한 실험적 연구

  • ;;;;;G. Wilkowski
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.296-301
    • /
    • 1996
  • 이 연구의 목적은 원주방향 균열을 가진 페라이틱 배관의 파괴거동을 실험적으로 평가하는데 있다. 한계하중방법, SC.TNP 방법, R6방법, 그리고 ASME Code방법과 같은 여러 파괴거동 평가 방법의 타당성이 PWR 운전조건(압력:15.5MPa, 온도:228$^{\circ}C$)하에서의 직경 16인치의 대규모 배관파괴실험을 통해 조사된다. 모사지진하중, 단일주파수 사인함수하중, 정하중과 같은 여러 가지 형태의 하중이 배관의 하중지지능력에 미치는 영향이 조사된다. 또한 엘보우부위와 직관부의 영향과 표면균열 및 관통균일의 영향 등도 함께 조사된다. 결과는 다음과 같다. (1) 표면균열을 가진 배관의 파괴거동은 한계하중방법과 SC.TNP 방법에 의해 잘 예측할 수 있다. 반면 관통균열의 경우는 한계하중방법에 의해 잘 예측된다. (2) 모사지진하중하에서는 단일주파수 사인함수하중이나 정하중 하에서 보다 하중지지능력이 크게 예측된다. (3) 엘보우부위와 직관부, 관통균열과 표면균열 사이에 파괴거동에 대한 큰 차이는 없다.

  • PDF

Estimation of Critical Height of Embankment to Mobilize Soil Arching in Pile-supported Embankment (말뚝지지성토지반 내 지반아칭이 발달할 수 있는 한계성토고의 평가)

  • Hong, Won-Pyo;Hong, Seong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.89-98
    • /
    • 2010
  • A method to design a critical height of embankments is presented so as to mobilize fully soil arching in pile-supported embankments. The behavior of the load transfer of embankment weights on pile cap beams was investigated by a series of model tests performed on pile-supported embankments with relatively wide space between cap beams. The model tests explained that the behavior of the load transfer depended very much on the height of embankments, because soil arching could be mobilized in pile-supported embankments only under enough high embankments. The measured vertical loads on cap beams coincided with the predicted ones estimated by the theoretical equations, which have been presented in the previous studies on the basis of load transfer mechanisms according to either the punching shear failure mode during low filling stage or the soil arching failure mode during high filling stage. The mechanism of the load transfer was shifted beyond a critical height of embankment from the punching shear mechanism to the soil arching mechanism. Therefore, in order to mobilize soil arching in pile-supported embankments, the embankments should be designed at least higher than the critical height. A theoretical equation to estimate the critical height could be derived by equalizing the vertical loads estimated by the load transfer mechanisms on the basis of both the punching shear and the soil arching. The derived theoretical equation could predict very well the experimental critical height of embankment.

Reliability Analysis Offshore Wind Turbine Support Structure Under Extreme Ocean Environmental Loads (극한 해양 환경하중을 고려한 해상풍력터빈 지지구조물의 신뢰성 해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Reliability analysis of jacket type offshore wind turbine (OWT) support structure under extreme ocean environmental loads was performed. Limit state function (LSF) of OWF support structure is defined by using structural dynamic response at mud-line. Then, the dynamic response is expressed as the static response multiplied by dynamic response factor (DRF). Probabilistic distribution of DRF is found from response time history under design significant wave load. Band limited beta distribution is used for internal friction angle of ground soil. Wind load is obtained in the form of thrust force from commercial code called GH_Bladed and then, applied to tower hub as random load. In a numerical example, the response surface method (RSM) is used to express LSF of jacket type support structure for 5MW OWF. Reliability index is found using first order reliability method (FORM).

VISITING, NEW INTERNATIONAL CODES OF PRACTICE FOR DRIVEN PILES (관입말뚝을 위한 새 국제적 시방서에의 방문)

  • 윤길림;구자갑
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.17.2-25
    • /
    • 1995
  • 한계상태설계법이 지반공학에 도입되었다. 하중과 지지계력수법 그리고 우로코드로 되어있는 본 설계법에서 신뢰성이론을 토대로 한 전자는 북미지역에서, 반통계론적인 후자는 최근에 통합된 유럽연합에서 오래동안 연구 후 채택하였다. 본 논문은 이러한 설계법을 방법론적으로 검토접근하며 다른 선진국의 연구활동을 알아봤으며, 하중과 지지력계수설계법에서 관입말뚝에 대한 지지력계수를 결정하는 합리적인 방법론을 제시하는데 있다.

  • PDF

Assessment of Partial Safety Factors for Limit States Design of Foundations (한계상태설계법의 기초설계 적용을 위한 부분안전계수의 평가)

  • Kim Bum-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.77-89
    • /
    • 2004
  • While limit states design (LSD) is currently the standard structural design practice, it is relatively new in the geotechnical design. Adoption of LSD far geotechnical design is an international trend. In the present study, various LSD codes from the United States, Canada, and Europe were reviewed. A simple first-order-second-moment (FOSM) reliability analysis was performed to determine theoretically the ranges of load and resistance factor values for representative loads and foundation bearing capacity, respectively. In order for foundation design to be consistent with current structural design practice, it would be desirable to use the same loads, load factors and load combinations. The values of load factor, obtained from the FOSM analysis, were found to be generally consistent with those given in the codes, whereas the values of resistance factor indicated overall lower ranges due to high values of coefficient of variation used in the analysis. Since the degree of uncertainties included in bearing capacity of foundations varies with the methods used to estimate the bearing capacity, different values of resistance factor should be used fur different methods. For the purpose, continuous efforts are needed to be made first to accurately identify and quantify the uncertainties in the methods.

The Limiting Load Capacity of Air Foil Thrust Bearings (공기 포일 스러스트 베어링의 한계 지지하중 해석)

  • Jung, Si-Young
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.279-284
    • /
    • 2009
  • The limiting load capacity of air foil thrust bearings at extremely high operating speeds is theoretically investigated. The limiting load capacity of a sector is shown to increase as the angular extent ${\beta}$ and the inlet film thickness $h_1$ of the bearing increase, while it decreases with an increase in the ramp ratio b and the compliance ${\alpha}$ of the bearing. But it is found that the angular extent of the bearing is not related to the total limiting load capacity of the $360^{\circ}$ thrust bearing.

A Study on the Determination of Bearing Capacity of Soft Silty Ground and Polluted Silty Ground with Wastewater and Factory Waste Oil (연약한 실트지반과 생활오폐수와 공장폐유로 오염된 실트지반의 지지력 결정에 관한 연구)

  • Ahn, Jong-Pil;Park, Sang-Bum
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.5-13
    • /
    • 2008
  • Laboratory model test with soft silty ground (ML) and polluted silty ground with wastewater and factory waste oil ($ML_p$) was conducted and the applicability of changes of bearing capacity from the increase of pollutants was compared and analyzed with existing findings. As silty ground polluted with wastewater and factory waste oil had increased contents of pollutants, plasticization of ground was fostered compared to soft silt ground due to the influence of pollutants, and characteristics of ground strength decreased. Critical surcharge value of soft silty ground $q_{cr}=4.14c_u$, ultimate bearing capacity value $q_{ult}=9.53c_u$, critical surcharge value of silty ground polluted with wastewater and factory waste oil $q_{cr}=1.78c_u$ and ultimate bearing capacity value $q_{ult}=4.39c_u$. Critical surcharge and ultimate bearing capacity of silty ground polluted with wastewater and factory waste oil were less than those of soft silty ground. It meant that shearing resistance due to the increase of pollutants decreased and rather a smaller value was obtained.

Behavior of Bearing Capacity for Shallow Foundation on a Sand overlying Clay Depending on Bearing Capacity Ratio (점토층 위 모래지반의 지지력비에 따른 얕은 기초의 지지력 거동)

  • Jung, Min Hyung;Shin, Hyo Hee;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.198-208
    • /
    • 2011
  • When a structure which has relatively low load constructs on soft clay, the bearing capacity of the ground will be improved by sand overlying clay. In this condition, verifying the bearing capacity is difficult from the P.B.T etcetera in the in-situ. So, it is needed to estimate precise bearing capacity in the design process. In this study, 2-dimensional chamber tests and FEM analyses are conducted to evaluate behavior of bearing capacity for shallow foundations on a sand overlying clay. Because depth ratio H/B and bearing capacity ratio $q_c/q_s$ are selected as main factors, height of a sand, undrained shear strength of a clay and width of a loading are designated as variables. Results from chamber tests are very similar with those of FEM analyses. And it shows that punching shear mechanism is more suitable than the equation of Okamura et al.(1998). To make continual application of load spread mechanism, the equivalent load spread angle is proposed for H/B and $q_c/q_s$. Also, the linear regression equation of critical depth ratio Hf is suggested for $q_c/q_s$.

Limit State Evaluation of Elbow Components Connected with Flexible Groove Joints (유동식 그루브 조인트로 연결된 엘보 요소의 한계상태 평가)

  • Sung-Wan Kim;Da-Woon Yun;Bub-Gyu Jeon;Dong-Uk Park;Sung-Jin Chang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.91-99
    • /
    • 2024
  • Piping systems are crucial facilities used in various industries, particularly in areas related to daily life and safety. Piping systems are fixed to the main structures of buildings and facilities but do not support external loads and serve as non-structural elements performing specific functions. Piping systems are affected by relative displacements owing to phase differences arising from different behaviors between two support points under seismic loads; this can cause damage owing to the displacement-dominant cyclic behavior. Fittings and joints in piping systems are representative elements that are vulnerable to seismic loads. To evaluate the seismic performance and limit states of fittings and joints in piping systems, a high-stroke actuator is required to simulate relative displacements. However, this is challenging because only few facilities can conduct these experiments. Therefore, element-level experiments are required to evaluate the seismic performance and limit states of piping systems connected by fittings and joints. This study proposed a method to evaluate the seismic performance of an elbow specimen that includes fittings and joints that are vulnerable to seismic loads in vertical piping systems. The elbow specimen was created by connecting straight pipes to both ends of a 90° pipe elbow using flexible groove joints. The seismic performance of the elbow specimen was evaluated using a cyclic loading protocol based on deformation angles. To determine the margin of the evaluated seismic performance, the limit states were assessed by applying cyclic loading with a constant amplitude.

Estimation of Ultimate Bearing Capacity of Gravel Compaction Piles Using Nonlinear Regression Analysis (비선형 회귀분석을 이용한 쇄석다짐말뚝의 극한지지력 예측)

  • Park, Joon Mo;Han, Yong Bae;Jang, Yeon Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.112-121
    • /
    • 2013
  • The calibration of resistance factor in reliability theory for limit state design of gravel compaction piles (GCP) requires a reliable estimate of ultimate bearing capacity. The static load test is commonly used in geotechnical engineering practice to predict the ultimate bearing capacity. Many graphical methods are specified in the design standard to define the ultimate bearing capacity based on the load-settlement curve. However, it has some disadvantages to ensure reliability to obtain an uniform ultimate load depend on engineering judgement. In this study, a well-fitting nonlinear regression model is proposed to estimate the ultimate bearing capacity, for which a nonlinear regression analysis is applied to estimate the ultimate bearing capacity of GCP and the results are compared with those calculated using previous graphical method. Affect the resistance factor of the estimate method were analyzed. To provide a database in the development of limit state design, the load test conditions for predicting the ultimate bearing capacity from static load test are examined.